Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283813834> ?p ?o ?g. }
- W4283813834 endingPage "104286" @default.
- W4283813834 startingPage "104286" @default.
- W4283813834 abstract "Deep convolutional neural networks have been applied to hyperspectral imaging (HSI) and have significantly improved modelling performance in many spectral analysis tasks due to their automatic extraction of relevant features. Using visible and near infrared hyperspectral (Vis-NIR) data, two-dimensional convolutional neural network (2D-CNN) discrimination models between the spectra of wolfberries and their corresponding classes of geographical origins were established and optimized using various variable selection and data fusion methods. The interval variable iterative space shrinking analysis (iVISSA), the uninformative variable elimination (UVE) algorithm, competitive adaptive reweighted sampling (CARS) and the iterative retained information variable (IRIV) algorithms were used to extract the feature wavelengths and compare the modelling effects; and then the 72 optimal wavelengths were extracted by the iVISSA algorithm. To extract the textural features of images, grey-level co-occurrence matrix (GLCM) analysis was conducted on the first principal component image. Models using variable selection methods based on low-level fusion data were superior to the corresponding methods based on single spectral data. The model based on iVISSA achieved the best result on mid-level fusion, the prediction set accuracy and mean F1 were 97.34% and 100%, respectively. Finally, optimized models of spectral-textural data were employed to identify the geographical origins of wolfberries. In general, the results showed that 2D-CNN model combined with fusion data of spectral and textural information can obtain excellent identification effect for the near geographical origins of wolfberries. This study may help develop an online detection system of near geographical origins of wolfberries." @default.
- W4283813834 created "2022-07-06" @default.
- W4283813834 creator A5005375567 @default.
- W4283813834 creator A5018171305 @default.
- W4283813834 creator A5022316841 @default.
- W4283813834 creator A5025250730 @default.
- W4283813834 creator A5037994745 @default.
- W4283813834 creator A5038563124 @default.
- W4283813834 creator A5078719624 @default.
- W4283813834 date "2022-09-01" @default.
- W4283813834 modified "2023-10-06" @default.
- W4283813834 title "Investigation of the data fusion of spectral and textural data from hyperspectral imaging for the near geographical origin discrimination of wolfberries using 2D-CNN algorithms" @default.
- W4283813834 cites W1978289256 @default.
- W4283813834 cites W2017578403 @default.
- W4283813834 cites W2072693360 @default.
- W4283813834 cites W2130470869 @default.
- W4283813834 cites W2179628444 @default.
- W4283813834 cites W2346511615 @default.
- W4283813834 cites W2500751094 @default.
- W4283813834 cites W2572303978 @default.
- W4283813834 cites W2612804903 @default.
- W4283813834 cites W2735738785 @default.
- W4283813834 cites W2767054344 @default.
- W4283813834 cites W2905066282 @default.
- W4283813834 cites W2905421928 @default.
- W4283813834 cites W2906309407 @default.
- W4283813834 cites W2988330380 @default.
- W4283813834 cites W2990086321 @default.
- W4283813834 cites W3007611784 @default.
- W4283813834 cites W3007918442 @default.
- W4283813834 cites W3010558195 @default.
- W4283813834 cites W3012046926 @default.
- W4283813834 cites W3012085312 @default.
- W4283813834 cites W3021896652 @default.
- W4283813834 cites W3028231515 @default.
- W4283813834 cites W3030011285 @default.
- W4283813834 cites W3036170986 @default.
- W4283813834 cites W3039595279 @default.
- W4283813834 cites W3086013062 @default.
- W4283813834 cites W3092667979 @default.
- W4283813834 cites W3094093743 @default.
- W4283813834 cites W3110074435 @default.
- W4283813834 cites W3118385448 @default.
- W4283813834 cites W3126090857 @default.
- W4283813834 cites W3130403473 @default.
- W4283813834 cites W3139553861 @default.
- W4283813834 doi "https://doi.org/10.1016/j.infrared.2022.104286" @default.
- W4283813834 hasPublicationYear "2022" @default.
- W4283813834 type Work @default.
- W4283813834 citedByCount "13" @default.
- W4283813834 countsByYear W42838138342022 @default.
- W4283813834 countsByYear W42838138342023 @default.
- W4283813834 crossrefType "journal-article" @default.
- W4283813834 hasAuthorship W4283813834A5005375567 @default.
- W4283813834 hasAuthorship W4283813834A5018171305 @default.
- W4283813834 hasAuthorship W4283813834A5022316841 @default.
- W4283813834 hasAuthorship W4283813834A5025250730 @default.
- W4283813834 hasAuthorship W4283813834A5037994745 @default.
- W4283813834 hasAuthorship W4283813834A5038563124 @default.
- W4283813834 hasAuthorship W4283813834A5078719624 @default.
- W4283813834 hasConcept C11413529 @default.
- W4283813834 hasConcept C134306372 @default.
- W4283813834 hasConcept C138885662 @default.
- W4283813834 hasConcept C148483581 @default.
- W4283813834 hasConcept C153180895 @default.
- W4283813834 hasConcept C154945302 @default.
- W4283813834 hasConcept C158525013 @default.
- W4283813834 hasConcept C159078339 @default.
- W4283813834 hasConcept C173163844 @default.
- W4283813834 hasConcept C182365436 @default.
- W4283813834 hasConcept C27438332 @default.
- W4283813834 hasConcept C33923547 @default.
- W4283813834 hasConcept C33954974 @default.
- W4283813834 hasConcept C41008148 @default.
- W4283813834 hasConcept C41895202 @default.
- W4283813834 hasConcept C58489278 @default.
- W4283813834 hasConcept C81363708 @default.
- W4283813834 hasConceptScore W4283813834C11413529 @default.
- W4283813834 hasConceptScore W4283813834C134306372 @default.
- W4283813834 hasConceptScore W4283813834C138885662 @default.
- W4283813834 hasConceptScore W4283813834C148483581 @default.
- W4283813834 hasConceptScore W4283813834C153180895 @default.
- W4283813834 hasConceptScore W4283813834C154945302 @default.
- W4283813834 hasConceptScore W4283813834C158525013 @default.
- W4283813834 hasConceptScore W4283813834C159078339 @default.
- W4283813834 hasConceptScore W4283813834C173163844 @default.
- W4283813834 hasConceptScore W4283813834C182365436 @default.
- W4283813834 hasConceptScore W4283813834C27438332 @default.
- W4283813834 hasConceptScore W4283813834C33923547 @default.
- W4283813834 hasConceptScore W4283813834C33954974 @default.
- W4283813834 hasConceptScore W4283813834C41008148 @default.
- W4283813834 hasConceptScore W4283813834C41895202 @default.
- W4283813834 hasConceptScore W4283813834C58489278 @default.
- W4283813834 hasConceptScore W4283813834C81363708 @default.
- W4283813834 hasFunder F4320321001 @default.
- W4283813834 hasLocation W42838138341 @default.
- W4283813834 hasOpenAccess W4283813834 @default.
- W4283813834 hasPrimaryLocation W42838138341 @default.