Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283816843> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4283816843 endingPage "298" @default.
- W4283816843 startingPage "285" @default.
- W4283816843 abstract "We introduce the Red-Blue Separation problem on graphs, where we are given a graph $$G = (V, E)$$ whose vertices are colored either red or blue, and we want to select a (small) subset $$mathcal{S} subseteq V$$ , called red-blue separating set, such that for every red-blue pair of vertices, there is a vertex $$s in mathcal S$$ whose closed neighborhood contains exactly one of the two vertices of the pair. We study the computational complexity of Red-Blue Separation, in which one asks whether a given red-blue colored graph has a red-blue separating set of size at most a given integer. We prove that the problem is NP-complete even for restricted graph classes. We also show that it is always approximable in polynomial time within a factor of $$2ln n$$ , where n is the input graph’s order. In contrast, for triangle-free graphs and for graphs of bounded maximum degree, we show that Red-Blue Separation is solvable in polynomial time when the size of the smaller color class is bounded by a constant. However, on general graphs, we show that the problem is W[2]-hard even when parameterized by the solution size plus the size of the smaller color class. We also consider the problem Max Red-Blue Separation where the coloring is not part of the input. Here, given an input graph G, we want to determine the smallest integer k such that, for every possible red-blue-coloring of G, there is a red-blue separating set of size at most k. We derive tight bounds on the cardinality of an optimal solution of Max Red-Blue Separation, showing that it can range from logarithmic in the graph order, up to the order minus one. We also give bounds with respect to related parameters. For trees however we prove an upper bound of two-thirds the order. We then show that Max Red-Blue Separation is NP-hard, even for graphs of bounded maximum degree, but can be approximated in polynomial time within a factor of $$O(ln ^ 2 n)$$ ." @default.
- W4283816843 created "2022-07-06" @default.
- W4283816843 creator A5005407145 @default.
- W4283816843 creator A5036623936 @default.
- W4283816843 creator A5039055198 @default.
- W4283816843 creator A5071276295 @default.
- W4283816843 creator A5076222102 @default.
- W4283816843 date "2022-01-01" @default.
- W4283816843 modified "2023-09-27" @default.
- W4283816843 title "The Red-Blue Separation Problem on Graphs" @default.
- W4283816843 cites W1513133520 @default.
- W4283816843 cites W1513939901 @default.
- W4283816843 cites W1582835783 @default.
- W4283816843 cites W1745697583 @default.
- W4283816843 cites W1993023750 @default.
- W4283816843 cites W2003979824 @default.
- W4283816843 cites W2014608127 @default.
- W4283816843 cites W202428694 @default.
- W4283816843 cites W2034175063 @default.
- W4283816843 cites W2044471216 @default.
- W4283816843 cites W2056975974 @default.
- W4283816843 cites W2078516523 @default.
- W4283816843 cites W2080276120 @default.
- W4283816843 cites W2095756139 @default.
- W4283816843 cites W2100994793 @default.
- W4283816843 cites W2112104566 @default.
- W4283816843 cites W2168924128 @default.
- W4283816843 cites W2947905785 @default.
- W4283816843 cites W2963283342 @default.
- W4283816843 cites W3117215867 @default.
- W4283816843 cites W4212812385 @default.
- W4283816843 cites W4238284510 @default.
- W4283816843 cites W4292230561 @default.
- W4283816843 doi "https://doi.org/10.1007/978-3-031-06678-8_21" @default.
- W4283816843 hasPublicationYear "2022" @default.
- W4283816843 type Work @default.
- W4283816843 citedByCount "0" @default.
- W4283816843 crossrefType "book-chapter" @default.
- W4283816843 hasAuthorship W4283816843A5005407145 @default.
- W4283816843 hasAuthorship W4283816843A5036623936 @default.
- W4283816843 hasAuthorship W4283816843A5039055198 @default.
- W4283816843 hasAuthorship W4283816843A5071276295 @default.
- W4283816843 hasAuthorship W4283816843A5076222102 @default.
- W4283816843 hasBestOaLocation W42838168432 @default.
- W4283816843 hasConcept C114614502 @default.
- W4283816843 hasConcept C118615104 @default.
- W4283816843 hasConcept C132525143 @default.
- W4283816843 hasConcept C134306372 @default.
- W4283816843 hasConcept C159985019 @default.
- W4283816843 hasConcept C165464430 @default.
- W4283816843 hasConcept C192562407 @default.
- W4283816843 hasConcept C2778307483 @default.
- W4283816843 hasConcept C33923547 @default.
- W4283816843 hasConcept C34388435 @default.
- W4283816843 hasConcept C76946457 @default.
- W4283816843 hasConcept C80899671 @default.
- W4283816843 hasConceptScore W4283816843C114614502 @default.
- W4283816843 hasConceptScore W4283816843C118615104 @default.
- W4283816843 hasConceptScore W4283816843C132525143 @default.
- W4283816843 hasConceptScore W4283816843C134306372 @default.
- W4283816843 hasConceptScore W4283816843C159985019 @default.
- W4283816843 hasConceptScore W4283816843C165464430 @default.
- W4283816843 hasConceptScore W4283816843C192562407 @default.
- W4283816843 hasConceptScore W4283816843C2778307483 @default.
- W4283816843 hasConceptScore W4283816843C33923547 @default.
- W4283816843 hasConceptScore W4283816843C34388435 @default.
- W4283816843 hasConceptScore W4283816843C76946457 @default.
- W4283816843 hasConceptScore W4283816843C80899671 @default.
- W4283816843 hasLocation W42838168431 @default.
- W4283816843 hasLocation W42838168432 @default.
- W4283816843 hasLocation W42838168433 @default.
- W4283816843 hasLocation W42838168434 @default.
- W4283816843 hasLocation W42838168435 @default.
- W4283816843 hasLocation W42838168436 @default.
- W4283816843 hasOpenAccess W4283816843 @default.
- W4283816843 hasPrimaryLocation W42838168431 @default.
- W4283816843 hasRelatedWork W1719252778 @default.
- W4283816843 hasRelatedWork W2031098440 @default.
- W4283816843 hasRelatedWork W2923947242 @default.
- W4283816843 hasRelatedWork W2950011768 @default.
- W4283816843 hasRelatedWork W3013879552 @default.
- W4283816843 hasRelatedWork W4226175138 @default.
- W4283816843 hasRelatedWork W4226494131 @default.
- W4283816843 hasRelatedWork W4285202622 @default.
- W4283816843 hasRelatedWork W4300069928 @default.
- W4283816843 hasRelatedWork W4372262496 @default.
- W4283816843 isParatext "false" @default.
- W4283816843 isRetracted "false" @default.
- W4283816843 workType "book-chapter" @default.