Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283818380> ?p ?o ?g. }
- W4283818380 endingPage "2120" @default.
- W4283818380 startingPage "2120" @default.
- W4283818380 abstract "Climate change and the development of urban centers within flood-prone areas have significantly increased flood-related disasters worldwide. However, most flood risk categorization and prediction efforts have been focused on the hydrologic features of flood hazards, often not considering subsequent long-term losses and recovery trajectories (i.e., community’s flood resilience). In this study, a two-stage Machine Learning (ML)-based framework is developed to accurately categorize and predict communities’ flood resilience and their response to future flood hazards. This framework is a step towards developing comprehensive, proactive flood disaster management planning to further ensure functioning urban centers and mitigate the risk of future catastrophic flood events. In this framework, resilience indices are synthesized considering resilience goals (i.e., robustness and rapidity) using unsupervised ML, coupled with climate information, to develop a supervised ML prediction algorithm. To showcase the utility of the framework, it was applied on historical flood disaster records collected by the US National Weather Services. These disaster records were subsequently used to develop the resilience indices, which were then coupled with the associated historical climate data, resulting in high-accuracy predictions and, thus, utility in flood resilience management studies. To further demonstrate the utilization of the framework, a spatial analysis was developed to quantify communities’ flood resilience and vulnerability across the selected spatial domain. The framework presented in this study is employable in climate studies and patio-temporal vulnerability identification. Such a framework can also empower decision makers to develop effective data-driven climate resilience strategies." @default.
- W4283818380 created "2022-07-06" @default.
- W4283818380 creator A5010665825 @default.
- W4283818380 creator A5047784182 @default.
- W4283818380 creator A5073548426 @default.
- W4283818380 date "2022-07-02" @default.
- W4283818380 modified "2023-10-14" @default.
- W4283818380 title "Data-Driven Community Flood Resilience Prediction" @default.
- W4283818380 cites W1528434799 @default.
- W4283818380 cites W1964647807 @default.
- W4283818380 cites W1978998515 @default.
- W4283818380 cites W1990354749 @default.
- W4283818380 cites W1992419399 @default.
- W4283818380 cites W1997054814 @default.
- W4283818380 cites W2004159986 @default.
- W4283818380 cites W2012533078 @default.
- W4283818380 cites W2026342944 @default.
- W4283818380 cites W2029604816 @default.
- W4283818380 cites W2046381157 @default.
- W4283818380 cites W2051589410 @default.
- W4283818380 cites W2054988576 @default.
- W4283818380 cites W2089253196 @default.
- W4283818380 cites W2110013894 @default.
- W4283818380 cites W2110346595 @default.
- W4283818380 cites W2112235833 @default.
- W4283818380 cites W2112688502 @default.
- W4283818380 cites W2115320707 @default.
- W4283818380 cites W2127096916 @default.
- W4283818380 cites W2140097570 @default.
- W4283818380 cites W2270192120 @default.
- W4283818380 cites W2520571446 @default.
- W4283818380 cites W2528690380 @default.
- W4283818380 cites W2594352094 @default.
- W4283818380 cites W2622584703 @default.
- W4283818380 cites W2685457721 @default.
- W4283818380 cites W2764115123 @default.
- W4283818380 cites W2792871148 @default.
- W4283818380 cites W2796299618 @default.
- W4283818380 cites W2801893937 @default.
- W4283818380 cites W2803201508 @default.
- W4283818380 cites W2809037180 @default.
- W4283818380 cites W2896647402 @default.
- W4283818380 cites W2902913073 @default.
- W4283818380 cites W2952313228 @default.
- W4283818380 cites W2982358567 @default.
- W4283818380 cites W3005945152 @default.
- W4283818380 cites W3011854702 @default.
- W4283818380 cites W3013902092 @default.
- W4283818380 cites W3014020741 @default.
- W4283818380 cites W3043380076 @default.
- W4283818380 cites W3096804250 @default.
- W4283818380 cites W3097126796 @default.
- W4283818380 cites W3099487920 @default.
- W4283818380 cites W3123325733 @default.
- W4283818380 cites W3130065289 @default.
- W4283818380 cites W3131847069 @default.
- W4283818380 cites W3164437782 @default.
- W4283818380 cites W4212883601 @default.
- W4283818380 cites W4280643639 @default.
- W4283818380 doi "https://doi.org/10.3390/w14132120" @default.
- W4283818380 hasPublicationYear "2022" @default.
- W4283818380 type Work @default.
- W4283818380 citedByCount "2" @default.
- W4283818380 countsByYear W42838183802022 @default.
- W4283818380 countsByYear W42838183802023 @default.
- W4283818380 crossrefType "journal-article" @default.
- W4283818380 hasAuthorship W4283818380A5010665825 @default.
- W4283818380 hasAuthorship W4283818380A5047784182 @default.
- W4283818380 hasAuthorship W4283818380A5073548426 @default.
- W4283818380 hasBestOaLocation W42838183801 @default.
- W4283818380 hasConcept C107826830 @default.
- W4283818380 hasConcept C111919701 @default.
- W4283818380 hasConcept C112930515 @default.
- W4283818380 hasConcept C121332964 @default.
- W4283818380 hasConcept C132651083 @default.
- W4283818380 hasConcept C144133560 @default.
- W4283818380 hasConcept C152124472 @default.
- W4283818380 hasConcept C154945302 @default.
- W4283818380 hasConcept C166957645 @default.
- W4283818380 hasConcept C18903297 @default.
- W4283818380 hasConcept C205649164 @default.
- W4283818380 hasConcept C2777420705 @default.
- W4283818380 hasConcept C2779488668 @default.
- W4283818380 hasConcept C2779585090 @default.
- W4283818380 hasConcept C38652104 @default.
- W4283818380 hasConcept C39432304 @default.
- W4283818380 hasConcept C41008148 @default.
- W4283818380 hasConcept C74256435 @default.
- W4283818380 hasConcept C86803240 @default.
- W4283818380 hasConcept C91375879 @default.
- W4283818380 hasConcept C94124525 @default.
- W4283818380 hasConcept C95713431 @default.
- W4283818380 hasConcept C97355855 @default.
- W4283818380 hasConceptScore W4283818380C107826830 @default.
- W4283818380 hasConceptScore W4283818380C111919701 @default.
- W4283818380 hasConceptScore W4283818380C112930515 @default.
- W4283818380 hasConceptScore W4283818380C121332964 @default.
- W4283818380 hasConceptScore W4283818380C132651083 @default.