Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283825837> ?p ?o ?g. }
- W4283825837 endingPage "2379" @default.
- W4283825837 startingPage "2379" @default.
- W4283825837 abstract "The diversity of data collected on both social networks and digital interfaces is extremely increased, raising the problem of heterogeneous variables that are not often favourable to classification algorithms. Despite the significant improvement in machine learning (ML) and predictive analysis efficiency for classification in customer relationship management systems (CRM), their performance remains very limited by heterogeneous data processing, class imbalance, and feature scales. This impact turned out to be more important for simple ML methods which in addition often suffer from over-fitting. This paper proposes a succinct and detailed ML model building process including cross-validation of the combination of SMOTE to balance data and ensemble methods for modelling. From the conducted experiments, the random forest (RF) model yielded the best performance of 0.86 in terms of accuracy and f1-scoreusing balanced data. It confirms the literature summary about this topic which shows that RF was among the most effective algorithms for customer predictive classification issues. The constructed and optimized models were interpreted by Shapley values and feature importance analysis which shows that the “age” feature was the most significant while “HasCrCard” was the less one. This process has proven effective in bridging previously reported research gaps and the resulting model should be used for supporting bank customer loyalty decision-making." @default.
- W4283825837 created "2022-07-07" @default.
- W4283825837 creator A5005431949 @default.
- W4283825837 creator A5046723242 @default.
- W4283825837 creator A5075264283 @default.
- W4283825837 creator A5076640465 @default.
- W4283825837 creator A5085361908 @default.
- W4283825837 date "2022-07-06" @default.
- W4283825837 modified "2023-10-18" @default.
- W4283825837 title "Towards Explainable Machine Learning for Bank Churn Prediction Using Data Balancing and Ensemble-Based Methods" @default.
- W4283825837 cites W1551893431 @default.
- W4283825837 cites W1966743391 @default.
- W4283825837 cites W1982211005 @default.
- W4283825837 cites W1988110509 @default.
- W4283825837 cites W2001706356 @default.
- W4283825837 cites W2028126270 @default.
- W4283825837 cites W2040082158 @default.
- W4283825837 cites W2045049630 @default.
- W4283825837 cites W2062828236 @default.
- W4283825837 cites W2063734355 @default.
- W4283825837 cites W2063782798 @default.
- W4283825837 cites W2069300565 @default.
- W4283825837 cites W2074780813 @default.
- W4283825837 cites W2087240369 @default.
- W4283825837 cites W2102467277 @default.
- W4283825837 cites W2102739522 @default.
- W4283825837 cites W2112627523 @default.
- W4283825837 cites W2132791018 @default.
- W4283825837 cites W2138906630 @default.
- W4283825837 cites W2147953360 @default.
- W4283825837 cites W2148143831 @default.
- W4283825837 cites W2160767978 @default.
- W4283825837 cites W2161634631 @default.
- W4283825837 cites W2296885069 @default.
- W4283825837 cites W2338318698 @default.
- W4283825837 cites W2512929571 @default.
- W4283825837 cites W2561720024 @default.
- W4283825837 cites W2604900995 @default.
- W4283825837 cites W2792895843 @default.
- W4283825837 cites W2886903508 @default.
- W4283825837 cites W2896727370 @default.
- W4283825837 cites W2948009788 @default.
- W4283825837 cites W2954009356 @default.
- W4283825837 cites W2982435754 @default.
- W4283825837 cites W2995352644 @default.
- W4283825837 cites W2996705655 @default.
- W4283825837 cites W3000120361 @default.
- W4283825837 cites W3013392361 @default.
- W4283825837 cites W3022298391 @default.
- W4283825837 cites W3023049649 @default.
- W4283825837 cites W3049289261 @default.
- W4283825837 cites W3101570666 @default.
- W4283825837 cites W3105313970 @default.
- W4283825837 cites W3112878960 @default.
- W4283825837 cites W3135845961 @default.
- W4283825837 cites W3141537781 @default.
- W4283825837 cites W3172491501 @default.
- W4283825837 cites W3202219382 @default.
- W4283825837 cites W4220704221 @default.
- W4283825837 cites W4226184550 @default.
- W4283825837 cites W4249916000 @default.
- W4283825837 cites W769353746 @default.
- W4283825837 cites W2887759015 @default.
- W4283825837 doi "https://doi.org/10.3390/math10142379" @default.
- W4283825837 hasPublicationYear "2022" @default.
- W4283825837 type Work @default.
- W4283825837 citedByCount "8" @default.
- W4283825837 countsByYear W42838258372023 @default.
- W4283825837 crossrefType "journal-article" @default.
- W4283825837 hasAuthorship W4283825837A5005431949 @default.
- W4283825837 hasAuthorship W4283825837A5046723242 @default.
- W4283825837 hasAuthorship W4283825837A5075264283 @default.
- W4283825837 hasAuthorship W4283825837A5076640465 @default.
- W4283825837 hasAuthorship W4283825837A5085361908 @default.
- W4283825837 hasBestOaLocation W42838258371 @default.
- W4283825837 hasConcept C111919701 @default.
- W4283825837 hasConcept C119857082 @default.
- W4283825837 hasConcept C119898033 @default.
- W4283825837 hasConcept C124101348 @default.
- W4283825837 hasConcept C138885662 @default.
- W4283825837 hasConcept C154945302 @default.
- W4283825837 hasConcept C169258074 @default.
- W4283825837 hasConcept C174348530 @default.
- W4283825837 hasConcept C17744445 @default.
- W4283825837 hasConcept C199539241 @default.
- W4283825837 hasConcept C2776401178 @default.
- W4283825837 hasConcept C2776967331 @default.
- W4283825837 hasConcept C31258907 @default.
- W4283825837 hasConcept C41008148 @default.
- W4283825837 hasConcept C41895202 @default.
- W4283825837 hasConcept C45804977 @default.
- W4283825837 hasConcept C45942800 @default.
- W4283825837 hasConcept C75684735 @default.
- W4283825837 hasConcept C77088390 @default.
- W4283825837 hasConcept C83209312 @default.
- W4283825837 hasConcept C98045186 @default.
- W4283825837 hasConcept C98825075 @default.
- W4283825837 hasConceptScore W4283825837C111919701 @default.