Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283831660> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4283831660 endingPage "619" @default.
- W4283831660 startingPage "612" @default.
- W4283831660 abstract "In recent years, exploring the physiological and pathological mechanisms of brain functional integration from the neural network level has become one of the focuses of neuroscience research. Due to the non-stationary and nonlinear characteristics of neural signals, its linear characteristics are not sufficient to fully explain the potential neurophysiological activity mechanism in the implementation of complex brain functions. In order to overcome the limitation that the linear algorithm cannot effectively analyze the nonlinear characteristics of signals, researchers proposed the transfer entropy (TE) algorithm. In recent years, with the introduction of the concept of brain functional network, TE has been continuously optimized as a powerful tool for nonlinear time series multivariate analysis. This paper first introduces the principle of TE algorithm and the research progress of related improved algorithms, discusses and compares their respective characteristics, and then summarizes the application of TE algorithm in the field of electrophysiological signal analysis. Finally, combined with the research progress in recent years, the existing problems of TE are discussed, and the future development direction is prospected.近年来,从神经网络层面探索脑功能整合的相关生理病理机制已经成为神经科学领域研究关注的焦点之一。由于神经信号具有非平稳和非线性的特性,其线性特征不足以充分解释复杂脑功能执行过程中潜在的神经生理活动机制。为克服线性算法无法有效分析信号非线性特征的局限性,研究人员提出了传递熵(TE)算法。近年来,随着脑功能网络概念的引入,TE作为非线性时间序列多元分析的有力工具被不断优化。本文先介绍了TE算法的原理以及相关改进算法的研究进展,探讨比较了它们各自的特点,然后总结了TE算法在电生理信号分析领域的应用。最后,结合近几年的研究进展,探讨了TE目前存在的问题,并展望了其未来的发展方向。." @default.
- W4283831660 created "2022-07-07" @default.
- W4283831660 creator A5034165158 @default.
- W4283831660 creator A5056527739 @default.
- W4283831660 date "2022-06-25" @default.
- W4283831660 modified "2023-10-16" @default.
- W4283831660 title "[Research progress and application of transfer entropy algorithm]." @default.
- W4283831660 doi "https://doi.org/10.7507/1001-5515.202109067" @default.
- W4283831660 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35788531" @default.
- W4283831660 hasPublicationYear "2022" @default.
- W4283831660 type Work @default.
- W4283831660 citedByCount "0" @default.
- W4283831660 crossrefType "journal-article" @default.
- W4283831660 hasAuthorship W4283831660A5034165158 @default.
- W4283831660 hasAuthorship W4283831660A5056527739 @default.
- W4283831660 hasConcept C104267543 @default.
- W4283831660 hasConcept C106301342 @default.
- W4283831660 hasConcept C11413529 @default.
- W4283831660 hasConcept C119599485 @default.
- W4283831660 hasConcept C121332964 @default.
- W4283831660 hasConcept C127413603 @default.
- W4283831660 hasConcept C152478114 @default.
- W4283831660 hasConcept C154945302 @default.
- W4283831660 hasConcept C15744967 @default.
- W4283831660 hasConcept C158622935 @default.
- W4283831660 hasConcept C169760540 @default.
- W4283831660 hasConcept C41008148 @default.
- W4283831660 hasConcept C50644808 @default.
- W4283831660 hasConcept C62520636 @default.
- W4283831660 hasConcept C81299745 @default.
- W4283831660 hasConcept C84462506 @default.
- W4283831660 hasConcept C9390403 @default.
- W4283831660 hasConceptScore W4283831660C104267543 @default.
- W4283831660 hasConceptScore W4283831660C106301342 @default.
- W4283831660 hasConceptScore W4283831660C11413529 @default.
- W4283831660 hasConceptScore W4283831660C119599485 @default.
- W4283831660 hasConceptScore W4283831660C121332964 @default.
- W4283831660 hasConceptScore W4283831660C127413603 @default.
- W4283831660 hasConceptScore W4283831660C152478114 @default.
- W4283831660 hasConceptScore W4283831660C154945302 @default.
- W4283831660 hasConceptScore W4283831660C15744967 @default.
- W4283831660 hasConceptScore W4283831660C158622935 @default.
- W4283831660 hasConceptScore W4283831660C169760540 @default.
- W4283831660 hasConceptScore W4283831660C41008148 @default.
- W4283831660 hasConceptScore W4283831660C50644808 @default.
- W4283831660 hasConceptScore W4283831660C62520636 @default.
- W4283831660 hasConceptScore W4283831660C81299745 @default.
- W4283831660 hasConceptScore W4283831660C84462506 @default.
- W4283831660 hasConceptScore W4283831660C9390403 @default.
- W4283831660 hasIssue "3" @default.
- W4283831660 hasLocation W42838316601 @default.
- W4283831660 hasOpenAccess W4283831660 @default.
- W4283831660 hasPrimaryLocation W42838316601 @default.
- W4283831660 hasRelatedWork W10528485 @default.
- W4283831660 hasRelatedWork W10991549 @default.
- W4283831660 hasRelatedWork W11546141 @default.
- W4283831660 hasRelatedWork W12700776 @default.
- W4283831660 hasRelatedWork W14648536 @default.
- W4283831660 hasRelatedWork W2422068 @default.
- W4283831660 hasRelatedWork W311676 @default.
- W4283831660 hasRelatedWork W3564029 @default.
- W4283831660 hasRelatedWork W6083205 @default.
- W4283831660 hasRelatedWork W846391 @default.
- W4283831660 hasVolume "39" @default.
- W4283831660 isParatext "false" @default.
- W4283831660 isRetracted "false" @default.
- W4283831660 workType "article" @default.