Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283832017> ?p ?o ?g. }
- W4283832017 endingPage "16875" @default.
- W4283832017 startingPage "16862" @default.
- W4283832017 abstract "The response of B12N12-nanocages towards DNA-nucleobases (adenine, guanine, cytosine, and thymine) is investigated using MP2 and DFT (M06-2X) levels of theory with the 6-311+G** basis set. Multiple BN-cage-nucleobase structures for each nucleobase emerged depending on the number of Lewis base centers of nucleobases. The main source of stability of these complexes is the N/O→B dative bond, where the N or O atom of nucleobases donates the lone-pair electron to one of the boron atoms of the nanocage. Nitrogen atoms of the BN-cage, adjacent to the B-site forming dative bond, act as a proton acceptor to form multiple (N-HN and N-HC) hydrogen bonds, where proton-donors NH and CH are part of nucleobases. MP2/6-311+G** adsorption energies are -43.1, -43.4 and -45.3 kcal mol-1 (B12N12-adenine), -37.1, -41.9 and -43.3 kcal mol-1 (B12N12-guanine), -41.3 and -43.4 (B12N12-cytosine), and -29.3 and -31.3 (B12N12-thymine). Similar adsorption energies were recorded for larger BN-fullerenes-nucleobases, namely B16N16 and B24N24. Changes in adsorption energies and structures of these nano-bio-hybrid materials in aqueous media are also discussed. Computationally cost-effective MP2 single point calculations at the M06-2X optimized geometries were found to be reliable in predicting adsorption energies. The effect of the BN-network and H-bonds on the adsorption process is assessed by comparing the results with simple BH3-nucleobase models. BSSE correction to the adsorption energy is not recommended." @default.
- W4283832017 created "2022-07-07" @default.
- W4283832017 creator A5006334580 @default.
- W4283832017 creator A5008990793 @default.
- W4283832017 creator A5036812068 @default.
- W4283832017 creator A5051730116 @default.
- W4283832017 date "2022-01-01" @default.
- W4283832017 modified "2023-10-15" @default.
- W4283832017 title "N/O→B dative bonds supplemented by N–HN/HC hydrogen bonds make BN-cages an attractive candidate for DNA-nucleobase adsorption – an MP2 prediction" @default.
- W4283832017 cites W1635205504 @default.
- W4283832017 cites W1968912827 @default.
- W4283832017 cites W1971275758 @default.
- W4283832017 cites W1980377931 @default.
- W4283832017 cites W1980488323 @default.
- W4283832017 cites W1989856919 @default.
- W4283832017 cites W1990062441 @default.
- W4283832017 cites W1991908324 @default.
- W4283832017 cites W2007114278 @default.
- W4283832017 cites W2010932492 @default.
- W4283832017 cites W2011215428 @default.
- W4283832017 cites W2012249071 @default.
- W4283832017 cites W2013658238 @default.
- W4283832017 cites W2015248366 @default.
- W4283832017 cites W2021392169 @default.
- W4283832017 cites W2022408886 @default.
- W4283832017 cites W2029880010 @default.
- W4283832017 cites W2032627947 @default.
- W4283832017 cites W2037223803 @default.
- W4283832017 cites W2037963643 @default.
- W4283832017 cites W2039735251 @default.
- W4283832017 cites W2044940178 @default.
- W4283832017 cites W2046412723 @default.
- W4283832017 cites W2050056341 @default.
- W4283832017 cites W2050120002 @default.
- W4283832017 cites W2050317027 @default.
- W4283832017 cites W2055392809 @default.
- W4283832017 cites W2059022715 @default.
- W4283832017 cites W2066348791 @default.
- W4283832017 cites W2068932598 @default.
- W4283832017 cites W2071447380 @default.
- W4283832017 cites W2076455875 @default.
- W4283832017 cites W2086069141 @default.
- W4283832017 cites W2088318894 @default.
- W4283832017 cites W2139107535 @default.
- W4283832017 cites W2148941593 @default.
- W4283832017 cites W2150697053 @default.
- W4283832017 cites W2168442336 @default.
- W4283832017 cites W2285315891 @default.
- W4283832017 cites W2287335174 @default.
- W4283832017 cites W2313640529 @default.
- W4283832017 cites W2528888322 @default.
- W4283832017 cites W2529841225 @default.
- W4283832017 cites W2614923609 @default.
- W4283832017 cites W2617710029 @default.
- W4283832017 cites W2753643101 @default.
- W4283832017 cites W2765397933 @default.
- W4283832017 cites W2786812058 @default.
- W4283832017 cites W2809540400 @default.
- W4283832017 cites W2891640961 @default.
- W4283832017 cites W2905395603 @default.
- W4283832017 cites W2955561772 @default.
- W4283832017 cites W2983975997 @default.
- W4283832017 cites W2999598830 @default.
- W4283832017 cites W3000593247 @default.
- W4283832017 cites W3004931988 @default.
- W4283832017 cites W3012433039 @default.
- W4283832017 cites W3013139183 @default.
- W4283832017 cites W3047903775 @default.
- W4283832017 cites W3089084060 @default.
- W4283832017 cites W3092108904 @default.
- W4283832017 cites W3093506841 @default.
- W4283832017 cites W3112979034 @default.
- W4283832017 cites W3156969805 @default.
- W4283832017 cites W4221117636 @default.
- W4283832017 cites W571730305 @default.
- W4283832017 cites W88031792 @default.
- W4283832017 cites W986721795 @default.
- W4283832017 doi "https://doi.org/10.1039/d2cp01355j" @default.
- W4283832017 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35789353" @default.
- W4283832017 hasPublicationYear "2022" @default.
- W4283832017 type Work @default.
- W4283832017 citedByCount "1" @default.
- W4283832017 countsByYear W42838320172022 @default.
- W4283832017 crossrefType "journal-article" @default.
- W4283832017 hasAuthorship W4283832017A5006334580 @default.
- W4283832017 hasAuthorship W4283832017A5008990793 @default.
- W4283832017 hasAuthorship W4283832017A5036812068 @default.
- W4283832017 hasAuthorship W4283832017A5051730116 @default.
- W4283832017 hasConcept C104317684 @default.
- W4283832017 hasConcept C112887158 @default.
- W4283832017 hasConcept C128355301 @default.
- W4283832017 hasConcept C147597530 @default.
- W4283832017 hasConcept C161790260 @default.
- W4283832017 hasConcept C178790620 @default.
- W4283832017 hasConcept C185592680 @default.
- W4283832017 hasConcept C2776023528 @default.
- W4283832017 hasConcept C2776858809 @default.
- W4283832017 hasConcept C2778301229 @default.