Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283835231> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4283835231 endingPage "526" @default.
- W4283835231 startingPage "516" @default.
- W4283835231 abstract "Vulnerabilities can have devastating effects on information security, affecting the economy, social stability, and national security. The idea of automatic vulnerability detection has always attracted researchers. From traditional manual vulnerability mining techniques to static and dynamic detection, all rely on human experts for feature definition. The rapid development of machine learning and deep learning has alleviated the tedious task of manually defining features by human experts while reducing the lack of objectivity caused by human subjective awareness. However, it is still necessary to find an objective characterisation method to define the features of vulnerabilities. Therefore, the authors use code metrics for code characterisation, sequences of metrics representing code. To use code metrics for vulnerability detection, a deep learning-based vulnerability detection approach that uses a composite neural network of convolutional neural network (CNN) with long short-term memory (LSTM) is proposed. The authors conduct experiments independently using the proposed approach for CNN-LSTM CNN, LSTM, gated recurrent units (GRU), and deep neural network (DNN). The authors’ experimental results show that CNN-LSTM has a high precision of 92%, a recall of 99%, and an accuracy of 91%. In terms of the F1-score, it is 95%, compared to previous research results, which indicated an improvement of 18%. Compared to other deep learning-based vulnerability detection models, the authors’ proposed model produced a lower false-positive rate, a lower miss rate, and improved accuracy." @default.
- W4283835231 created "2022-07-07" @default.
- W4283835231 creator A5013537395 @default.
- W4283835231 creator A5035031650 @default.
- W4283835231 creator A5038369203 @default.
- W4283835231 creator A5046497465 @default.
- W4283835231 creator A5057660134 @default.
- W4283835231 date "2022-07-06" @default.
- W4283835231 modified "2023-10-18" @default.
- W4283835231 title "A deep learning‐based approach for software vulnerability detection using code metrics" @default.
- W4283835231 cites W2063908269 @default.
- W4283835231 cites W2517094600 @default.
- W4283835231 cites W2762461128 @default.
- W4283835231 cites W2796200341 @default.
- W4283835231 cites W2895787676 @default.
- W4283835231 cites W2941613753 @default.
- W4283835231 cites W2962960733 @default.
- W4283835231 cites W2963447020 @default.
- W4283835231 cites W2980999875 @default.
- W4283835231 cites W3016010691 @default.
- W4283835231 cites W3016970378 @default.
- W4283835231 cites W3023351371 @default.
- W4283835231 cites W3029522002 @default.
- W4283835231 cites W3048901179 @default.
- W4283835231 cites W3049398420 @default.
- W4283835231 cites W3091031970 @default.
- W4283835231 cites W3107289082 @default.
- W4283835231 cites W3108220046 @default.
- W4283835231 cites W3108936298 @default.
- W4283835231 cites W3111602563 @default.
- W4283835231 cites W3127736190 @default.
- W4283835231 cites W3127782461 @default.
- W4283835231 cites W3137781054 @default.
- W4283835231 cites W3159885222 @default.
- W4283835231 cites W3160246388 @default.
- W4283835231 cites W3161071537 @default.
- W4283835231 cites W3177413187 @default.
- W4283835231 cites W3194346579 @default.
- W4283835231 cites W4205733352 @default.
- W4283835231 cites W4211027502 @default.
- W4283835231 cites W4221033043 @default.
- W4283835231 doi "https://doi.org/10.1049/sfw2.12066" @default.
- W4283835231 hasPublicationYear "2022" @default.
- W4283835231 type Work @default.
- W4283835231 citedByCount "3" @default.
- W4283835231 countsByYear W42838352312023 @default.
- W4283835231 crossrefType "journal-article" @default.
- W4283835231 hasAuthorship W4283835231A5013537395 @default.
- W4283835231 hasAuthorship W4283835231A5035031650 @default.
- W4283835231 hasAuthorship W4283835231A5038369203 @default.
- W4283835231 hasAuthorship W4283835231A5046497465 @default.
- W4283835231 hasAuthorship W4283835231A5057660134 @default.
- W4283835231 hasBestOaLocation W42838352311 @default.
- W4283835231 hasConcept C108583219 @default.
- W4283835231 hasConcept C119857082 @default.
- W4283835231 hasConcept C154945302 @default.
- W4283835231 hasConcept C177264268 @default.
- W4283835231 hasConcept C199360897 @default.
- W4283835231 hasConcept C2776760102 @default.
- W4283835231 hasConcept C38652104 @default.
- W4283835231 hasConcept C41008148 @default.
- W4283835231 hasConcept C50644808 @default.
- W4283835231 hasConcept C81363708 @default.
- W4283835231 hasConcept C95713431 @default.
- W4283835231 hasConceptScore W4283835231C108583219 @default.
- W4283835231 hasConceptScore W4283835231C119857082 @default.
- W4283835231 hasConceptScore W4283835231C154945302 @default.
- W4283835231 hasConceptScore W4283835231C177264268 @default.
- W4283835231 hasConceptScore W4283835231C199360897 @default.
- W4283835231 hasConceptScore W4283835231C2776760102 @default.
- W4283835231 hasConceptScore W4283835231C38652104 @default.
- W4283835231 hasConceptScore W4283835231C41008148 @default.
- W4283835231 hasConceptScore W4283835231C50644808 @default.
- W4283835231 hasConceptScore W4283835231C81363708 @default.
- W4283835231 hasConceptScore W4283835231C95713431 @default.
- W4283835231 hasIssue "5" @default.
- W4283835231 hasLocation W42838352311 @default.
- W4283835231 hasLocation W42838352312 @default.
- W4283835231 hasOpenAccess W4283835231 @default.
- W4283835231 hasPrimaryLocation W42838352311 @default.
- W4283835231 hasRelatedWork W2731899572 @default.
- W4283835231 hasRelatedWork W2999805992 @default.
- W4283835231 hasRelatedWork W3116150086 @default.
- W4283835231 hasRelatedWork W3133861977 @default.
- W4283835231 hasRelatedWork W4200173597 @default.
- W4283835231 hasRelatedWork W4223943233 @default.
- W4283835231 hasRelatedWork W4291897433 @default.
- W4283835231 hasRelatedWork W4312417841 @default.
- W4283835231 hasRelatedWork W4321369474 @default.
- W4283835231 hasRelatedWork W4380075502 @default.
- W4283835231 hasVolume "16" @default.
- W4283835231 isParatext "false" @default.
- W4283835231 isRetracted "false" @default.
- W4283835231 workType "article" @default.