Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284664280> ?p ?o ?g. }
- W4284664280 abstract "Structure prediction has become a key task of the modern atomistic sciences, and depends on the rapid and reliable computation of the energy landscape. First principles density functional based calculations are highly reliable, faithfully describing the entire energy landscape. They are, however, computationally intensive and slow compared to interatomic potentials. Great progress has been made in the development of machine learning, or data derived, potentials, which promise to describe the entire energy landscape at first principles quality. However, compared to first principles approaches, their preparation can be time consuming and delay searching. Ab initio random structure searching (AIRSS) is a straightforward and powerful approach to structure prediction, based on the stochastic generation of sensible initial structures, and their repeated local optimisation. Here, a scheme, compatible with AIRSS, for the rapid construction of disposable, or ephemeral, data derived potentials (EDDPs) is described. These potentials are constructed using a homogeneous, separable manybody environment vector, and iterative neural network fits, sparsely combined through non-negative least squares. The approach is first tested on methane, boron nitride, elemental boron and urea. In the case of boron, an EDDP generated using data from small unit cells is used to rediscover the complex $gamma$-boron structure without recourse to symmetry or fragments. Finally, an EDDP generated for silane (SiH$_4$) at 500 GPa enables the discovery of an extremely complex, dense, structure which significantly modifies silane's high pressure phase diagram. This has implications for the theoretical exploration for high temperature superconductivity in the dense hydrides, which have so far largely depended on searches in smaller unit cells." @default.
- W4284664280 created "2022-07-08" @default.
- W4284664280 creator A5013004499 @default.
- W4284664280 date "2022-07-07" @default.
- W4284664280 modified "2023-10-15" @default.
- W4284664280 title "Ephemeral data derived potentials for random structure search" @default.
- W4284664280 cites W1479971046 @default.
- W4284664280 cites W1499888549 @default.
- W4284664280 cites W1668507869 @default.
- W4284664280 cites W1757084193 @default.
- W4284664280 cites W1870181268 @default.
- W4284664280 cites W1963957450 @default.
- W4284664280 cites W1965170315 @default.
- W4284664280 cites W1981368803 @default.
- W4284664280 cites W1983077902 @default.
- W4284664280 cites W1991409595 @default.
- W4284664280 cites W1992985800 @default.
- W4284664280 cites W1996029583 @default.
- W4284664280 cites W2001567980 @default.
- W4284664280 cites W2006102096 @default.
- W4284664280 cites W2006664057 @default.
- W4284664280 cites W2007395042 @default.
- W4284664280 cites W2018065950 @default.
- W4284664280 cites W2020488375 @default.
- W4284664280 cites W2024330948 @default.
- W4284664280 cites W2025444507 @default.
- W4284664280 cites W2028056984 @default.
- W4284664280 cites W2033517714 @default.
- W4284664280 cites W2037782625 @default.
- W4284664280 cites W2037978342 @default.
- W4284664280 cites W2040019593 @default.
- W4284664280 cites W2053947378 @default.
- W4284664280 cites W2054281993 @default.
- W4284664280 cites W2059885388 @default.
- W4284664280 cites W2067721120 @default.
- W4284664280 cites W2070873799 @default.
- W4284664280 cites W2072128103 @default.
- W4284664280 cites W2074736869 @default.
- W4284664280 cites W2076605490 @default.
- W4284664280 cites W2078177627 @default.
- W4284664280 cites W2078746662 @default.
- W4284664280 cites W2083415705 @default.
- W4284664280 cites W2084442980 @default.
- W4284664280 cites W2088610216 @default.
- W4284664280 cites W2092978020 @default.
- W4284664280 cites W2105192472 @default.
- W4284664280 cites W2117363206 @default.
- W4284664280 cites W2120145199 @default.
- W4284664280 cites W2133927870 @default.
- W4284664280 cites W2135293965 @default.
- W4284664280 cites W2139062161 @default.
- W4284664280 cites W2146037467 @default.
- W4284664280 cites W2159752439 @default.
- W4284664280 cites W2171466940 @default.
- W4284664280 cites W2197007850 @default.
- W4284664280 cites W2200589053 @default.
- W4284664280 cites W2256578114 @default.
- W4284664280 cites W2266385688 @default.
- W4284664280 cites W2310703973 @default.
- W4284664280 cites W2524910928 @default.
- W4284664280 cites W2561003326 @default.
- W4284664280 cites W2570134464 @default.
- W4284664280 cites W2610743751 @default.
- W4284664280 cites W2620687153 @default.
- W4284664280 cites W2681350253 @default.
- W4284664280 cites W2742127985 @default.
- W4284664280 cites W2753773550 @default.
- W4284664280 cites W2765459427 @default.
- W4284664280 cites W2769467136 @default.
- W4284664280 cites W2788484525 @default.
- W4284664280 cites W2804030504 @default.
- W4284664280 cites W2808239479 @default.
- W4284664280 cites W2933118606 @default.
- W4284664280 cites W2946418155 @default.
- W4284664280 cites W2951307360 @default.
- W4284664280 cites W2971894235 @default.
- W4284664280 cites W2982006073 @default.
- W4284664280 cites W2990925553 @default.
- W4284664280 cites W3003838176 @default.
- W4284664280 cites W3012140320 @default.
- W4284664280 cites W3027735479 @default.
- W4284664280 cites W3084211373 @default.
- W4284664280 cites W3098862241 @default.
- W4284664280 cites W3098955174 @default.
- W4284664280 cites W3099989971 @default.
- W4284664280 cites W3100156508 @default.
- W4284664280 cites W3102798902 @default.
- W4284664280 cites W3102994515 @default.
- W4284664280 cites W3105137560 @default.
- W4284664280 cites W3105711352 @default.
- W4284664280 cites W3141927472 @default.
- W4284664280 cites W3170394204 @default.
- W4284664280 cites W3185227028 @default.
- W4284664280 doi "https://doi.org/10.1103/physrevb.106.014102" @default.
- W4284664280 hasPublicationYear "2022" @default.
- W4284664280 type Work @default.
- W4284664280 citedByCount "8" @default.
- W4284664280 countsByYear W42846642802023 @default.
- W4284664280 crossrefType "journal-article" @default.
- W4284664280 hasAuthorship W4284664280A5013004499 @default.