Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284682829> ?p ?o ?g. }
- W4284682829 endingPage "37" @default.
- W4284682829 startingPage "37" @default.
- W4284682829 abstract "To cope with the increasing complexity of digital systems programming, deep learning techniques have recently been proposed to enhance software deployment by analysing source code for different purposes, ranging from performance and energy improvement to debugging and security assessment. As embedded platforms for cyber-physical systems are characterised by increasing heterogeneity and parallelism, one of the most challenging and specific problems is efficiently allocating computational kernels to available hardware resources. In this field, deep learning applied to source code can be a key enabler to face this complexity. However, due to the rapid development of such techniques, it is not easy to understand which of those are suitable and most promising for this class of systems. For this purpose, we discuss recent developments in deep learning for source code analysis, and focus on techniques for kernel mapping on heterogeneous platforms, highlighting recent results, challenges and opportunities for their applications to cyber-physical systems." @default.
- W4284682829 created "2022-07-08" @default.
- W4284682829 creator A5015497724 @default.
- W4284682829 creator A5022195134 @default.
- W4284682829 creator A5031653904 @default.
- W4284682829 creator A5047906923 @default.
- W4284682829 date "2022-07-05" @default.
- W4284682829 modified "2023-09-30" @default.
- W4284682829 title "Deep Learning Approaches to Source Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges and Opportunities" @default.
- W4284682829 cites W1498436455 @default.
- W4284682829 cites W1864199185 @default.
- W4284682829 cites W2005140205 @default.
- W4284682829 cites W2102976251 @default.
- W4284682829 cites W2111935653 @default.
- W4284682829 cites W2112121929 @default.
- W4284682829 cites W2116341502 @default.
- W4284682829 cites W2143861926 @default.
- W4284682829 cites W2282866165 @default.
- W4284682829 cites W2344444819 @default.
- W4284682829 cites W2402619042 @default.
- W4284682829 cites W2516621648 @default.
- W4284682829 cites W2618564128 @default.
- W4284682829 cites W2783614532 @default.
- W4284682829 cites W2795753518 @default.
- W4284682829 cites W2892341857 @default.
- W4284682829 cites W2935480346 @default.
- W4284682829 cites W2962724414 @default.
- W4284682829 cites W2963935794 @default.
- W4284682829 cites W2964150020 @default.
- W4284682829 cites W3007205676 @default.
- W4284682829 cites W3008788679 @default.
- W4284682829 cites W3100869085 @default.
- W4284682829 cites W3105867435 @default.
- W4284682829 cites W3108220046 @default.
- W4284682829 cites W3116350821 @default.
- W4284682829 cites W3152893301 @default.
- W4284682829 cites W3185404207 @default.
- W4284682829 cites W3201417714 @default.
- W4284682829 doi "https://doi.org/10.3390/jlpea12030037" @default.
- W4284682829 hasPublicationYear "2022" @default.
- W4284682829 type Work @default.
- W4284682829 citedByCount "0" @default.
- W4284682829 crossrefType "journal-article" @default.
- W4284682829 hasAuthorship W4284682829A5015497724 @default.
- W4284682829 hasAuthorship W4284682829A5022195134 @default.
- W4284682829 hasAuthorship W4284682829A5031653904 @default.
- W4284682829 hasAuthorship W4284682829A5047906923 @default.
- W4284682829 hasBestOaLocation W42846828291 @default.
- W4284682829 hasConcept C105339364 @default.
- W4284682829 hasConcept C108583219 @default.
- W4284682829 hasConcept C113775141 @default.
- W4284682829 hasConcept C114614502 @default.
- W4284682829 hasConcept C115903868 @default.
- W4284682829 hasConcept C119857082 @default.
- W4284682829 hasConcept C120314980 @default.
- W4284682829 hasConcept C154945302 @default.
- W4284682829 hasConcept C168065819 @default.
- W4284682829 hasConcept C199360897 @default.
- W4284682829 hasConcept C202444582 @default.
- W4284682829 hasConcept C2522767166 @default.
- W4284682829 hasConcept C33923547 @default.
- W4284682829 hasConcept C41008148 @default.
- W4284682829 hasConcept C43126263 @default.
- W4284682829 hasConcept C74193536 @default.
- W4284682829 hasConcept C9652623 @default.
- W4284682829 hasConceptScore W4284682829C105339364 @default.
- W4284682829 hasConceptScore W4284682829C108583219 @default.
- W4284682829 hasConceptScore W4284682829C113775141 @default.
- W4284682829 hasConceptScore W4284682829C114614502 @default.
- W4284682829 hasConceptScore W4284682829C115903868 @default.
- W4284682829 hasConceptScore W4284682829C119857082 @default.
- W4284682829 hasConceptScore W4284682829C120314980 @default.
- W4284682829 hasConceptScore W4284682829C154945302 @default.
- W4284682829 hasConceptScore W4284682829C168065819 @default.
- W4284682829 hasConceptScore W4284682829C199360897 @default.
- W4284682829 hasConceptScore W4284682829C202444582 @default.
- W4284682829 hasConceptScore W4284682829C2522767166 @default.
- W4284682829 hasConceptScore W4284682829C33923547 @default.
- W4284682829 hasConceptScore W4284682829C41008148 @default.
- W4284682829 hasConceptScore W4284682829C43126263 @default.
- W4284682829 hasConceptScore W4284682829C74193536 @default.
- W4284682829 hasConceptScore W4284682829C9652623 @default.
- W4284682829 hasIssue "3" @default.
- W4284682829 hasLocation W42846828291 @default.
- W4284682829 hasOpenAccess W4284682829 @default.
- W4284682829 hasPrimaryLocation W42846828291 @default.
- W4284682829 hasRelatedWork W2795261237 @default.
- W4284682829 hasRelatedWork W3014300295 @default.
- W4284682829 hasRelatedWork W3164822677 @default.
- W4284682829 hasRelatedWork W4223943233 @default.
- W4284682829 hasRelatedWork W4225161397 @default.
- W4284682829 hasRelatedWork W4312200629 @default.
- W4284682829 hasRelatedWork W4360585206 @default.
- W4284682829 hasRelatedWork W4364306694 @default.
- W4284682829 hasRelatedWork W4380075502 @default.
- W4284682829 hasRelatedWork W4380086463 @default.
- W4284682829 hasVolume "12" @default.
- W4284682829 isParatext "false" @default.