Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284689871> ?p ?o ?g. }
- W4284689871 endingPage "7138" @default.
- W4284689871 startingPage "7109" @default.
- W4284689871 abstract "Abstract This paper aims to examine the effects of singleand multi‐walled carbon nanotubes (CNTs) nanoparticles on heat transfer enhancement and inherent irreversibility in the boundary layer of water base nanoliquid flow over a convectively heated moving wedge with thermal radiation. Manipulation of the angle positioning towards the flow stream provides the opportunity for comparing physical aspects in the flow states, where three main geometries of the well‐known Falkner–Skan problem include: (i) the flat plat (named Blasius flow), (ii) the wedge, and (iii) the vertical plate (named Hiemenz stagnation flow) have been considered to present a comprehensive development of this significant problem. Applying suitable similarity constraints, the model partial differential equations are transformed into a set of nonlinear ordinary differential equations. Solutions are obtained analytically via optimal homotopy asymptotic method and numerically via shooting technique coupled with the Runge–Kutta–Fehlberg fourth–fifth scheme. The impacts of solid volume fraction of carbon nanoparticles along with other germane factors, such as wedge angle, velocity ratio parameter, Biot number, thermal radiation, and so forth on velocity and thermal profiles, Nusselt number, heat transfer enhancement, rate of entropy generation, and irreversibility ratio, are scrutinized via graphical simulations and discussed. Optimization of such entropy developments in the system was found to depend on geometrical ( β ), dynamical ( λ ), and thermophysical ( Bi , N R , Ec , φ ) parameters. The ultimate objective of reducing the energy loss and enhancing heat transference was obtained with the geometrical manipulation of a flat plate case ( β = 0). Dynamically ( λ = 1) were spotted to exert the best fluidity irrespective of obstacle shapes (wedge or plate) in its way. In thermophysical aspects, reducing the convective heating develops a favorable situation for attaining the optimal balance between energy loss and heat transfer. SWCNT/water could be the better choice with enhanced thermal transference ability and exerts minimal irreversibility to overshadow the influences of all the above‐mentioned factors. The SWCNT suspended nanofluid can provide 12%–64% heat transfer enhancement when compared with the multiwalled CNT nanofluid which ranges from over 11% to 58% heat transference rate." @default.
- W4284689871 created "2022-07-08" @default.
- W4284689871 creator A5022864710 @default.
- W4284689871 creator A5034863383 @default.
- W4284689871 creator A5050079179 @default.
- W4284689871 creator A5055070082 @default.
- W4284689871 creator A5078456453 @default.
- W4284689871 date "2022-07-07" @default.
- W4284689871 modified "2023-09-26" @default.
- W4284689871 title "Heat transfer enhancement and entropy generation minimization using CNTs suspended nanofluid upon a convectively warmed moving wedge: An optimal case study" @default.
- W4284689871 cites W1971218752 @default.
- W4284689871 cites W1971804044 @default.
- W4284689871 cites W1975238623 @default.
- W4284689871 cites W1975725955 @default.
- W4284689871 cites W1987024821 @default.
- W4284689871 cites W1988308975 @default.
- W4284689871 cites W2012345450 @default.
- W4284689871 cites W2016712829 @default.
- W4284689871 cites W2017420189 @default.
- W4284689871 cites W2019020590 @default.
- W4284689871 cites W2035190095 @default.
- W4284689871 cites W2035685097 @default.
- W4284689871 cites W2049541057 @default.
- W4284689871 cites W2049756669 @default.
- W4284689871 cites W2088928122 @default.
- W4284689871 cites W2117750491 @default.
- W4284689871 cites W2172794879 @default.
- W4284689871 cites W2315791016 @default.
- W4284689871 cites W2402484841 @default.
- W4284689871 cites W2767287713 @default.
- W4284689871 cites W2798205423 @default.
- W4284689871 cites W2805102130 @default.
- W4284689871 cites W2891641448 @default.
- W4284689871 cites W2892551877 @default.
- W4284689871 cites W2897396447 @default.
- W4284689871 cites W2908703290 @default.
- W4284689871 cites W2976526707 @default.
- W4284689871 cites W3008363543 @default.
- W4284689871 cites W3009399646 @default.
- W4284689871 cites W3035174214 @default.
- W4284689871 cites W3038844468 @default.
- W4284689871 cites W3048635526 @default.
- W4284689871 cites W3112747243 @default.
- W4284689871 cites W3133979087 @default.
- W4284689871 cites W3185846027 @default.
- W4284689871 cites W3215282525 @default.
- W4284689871 cites W4224251556 @default.
- W4284689871 cites W983420057 @default.
- W4284689871 doi "https://doi.org/10.1002/htj.22638" @default.
- W4284689871 hasPublicationYear "2022" @default.
- W4284689871 type Work @default.
- W4284689871 citedByCount "0" @default.
- W4284689871 crossrefType "journal-article" @default.
- W4284689871 hasAuthorship W4284689871A5022864710 @default.
- W4284689871 hasAuthorship W4284689871A5034863383 @default.
- W4284689871 hasAuthorship W4284689871A5050079179 @default.
- W4284689871 hasAuthorship W4284689871A5055070082 @default.
- W4284689871 hasAuthorship W4284689871A5078456453 @default.
- W4284689871 hasConcept C111603439 @default.
- W4284689871 hasConcept C115341296 @default.
- W4284689871 hasConcept C121332964 @default.
- W4284689871 hasConcept C130230704 @default.
- W4284689871 hasConcept C134306372 @default.
- W4284689871 hasConcept C173636693 @default.
- W4284689871 hasConcept C181587685 @default.
- W4284689871 hasConcept C182748727 @default.
- W4284689871 hasConcept C192562407 @default.
- W4284689871 hasConcept C196558001 @default.
- W4284689871 hasConcept C202444582 @default.
- W4284689871 hasConcept C21946209 @default.
- W4284689871 hasConcept C2524010 @default.
- W4284689871 hasConcept C33923547 @default.
- W4284689871 hasConcept C47422493 @default.
- W4284689871 hasConcept C50517652 @default.
- W4284689871 hasConcept C51544822 @default.
- W4284689871 hasConcept C57879066 @default.
- W4284689871 hasConcept C5961521 @default.
- W4284689871 hasConcept C78045399 @default.
- W4284689871 hasConcept C97355855 @default.
- W4284689871 hasConceptScore W4284689871C111603439 @default.
- W4284689871 hasConceptScore W4284689871C115341296 @default.
- W4284689871 hasConceptScore W4284689871C121332964 @default.
- W4284689871 hasConceptScore W4284689871C130230704 @default.
- W4284689871 hasConceptScore W4284689871C134306372 @default.
- W4284689871 hasConceptScore W4284689871C173636693 @default.
- W4284689871 hasConceptScore W4284689871C181587685 @default.
- W4284689871 hasConceptScore W4284689871C182748727 @default.
- W4284689871 hasConceptScore W4284689871C192562407 @default.
- W4284689871 hasConceptScore W4284689871C196558001 @default.
- W4284689871 hasConceptScore W4284689871C202444582 @default.
- W4284689871 hasConceptScore W4284689871C21946209 @default.
- W4284689871 hasConceptScore W4284689871C2524010 @default.
- W4284689871 hasConceptScore W4284689871C33923547 @default.
- W4284689871 hasConceptScore W4284689871C47422493 @default.
- W4284689871 hasConceptScore W4284689871C50517652 @default.
- W4284689871 hasConceptScore W4284689871C51544822 @default.
- W4284689871 hasConceptScore W4284689871C57879066 @default.
- W4284689871 hasConceptScore W4284689871C5961521 @default.