Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284693600> ?p ?o ?g. }
- W4284693600 abstract "In recent years, the convolution neural network has been the most widely used deep learning algorithm in the field of plant disease diagnosis and has performed well in classification. However, in practice, there are still some specific issues that have not been paid adequate attention to. For instance, the same pathogen may cause similar or different symptoms when infecting plant leaves, while the same pathogen may cause similar or disparate symptoms on different parts of the plant. Therefore, questions come up naturally: should the images showing different symptoms of the same disease be in one class or two separate classes in the image database? Also, how will the different classification methods affect the results of image recognition? In this study, taking rice leaf blast and neck blast caused by Magnaporthe oryzae, and rice sheath blight caused by Rhizoctonia solani as examples, three experiments were designed to explore how database configuration affects recognition accuracy in recognizing different symptoms of the same disease on the same plant part, similar symptoms of the same disease on different parts, and different symptoms on different parts. The results suggested that when the symptoms of the same disease were the same or similar, no matter whether they were on the same plant part or not, training combined classes of these images can get better performance than training them separately. When the difference between symptoms was obvious, the classification was relatively easy, and both separate training and combined training could achieve relatively high recognition accuracy. The results also, to a certain extent, indicated that the greater the number of images in the training data set, the higher the average classification accuracy." @default.
- W4284693600 created "2022-07-08" @default.
- W4284693600 creator A5008428605 @default.
- W4284693600 creator A5027937292 @default.
- W4284693600 creator A5030347313 @default.
- W4284693600 creator A5060675361 @default.
- W4284693600 creator A5082934980 @default.
- W4284693600 date "2022-07-05" @default.
- W4284693600 modified "2023-10-02" @default.
- W4284693600 title "Effects of Image Dataset Configuration on the Accuracy of Rice Disease Recognition Based on Convolution Neural Network" @default.
- W4284693600 cites W1978736802 @default.
- W4284693600 cites W1980453497 @default.
- W4284693600 cites W2117539524 @default.
- W4284693600 cites W2164237185 @default.
- W4284693600 cites W2166206801 @default.
- W4284693600 cites W2167828202 @default.
- W4284693600 cites W2274405424 @default.
- W4284693600 cites W2277854822 @default.
- W4284693600 cites W2311607323 @default.
- W4284693600 cites W2473156356 @default.
- W4284693600 cites W2730129132 @default.
- W4284693600 cites W2731165298 @default.
- W4284693600 cites W2758216428 @default.
- W4284693600 cites W2781587586 @default.
- W4284693600 cites W2789255992 @default.
- W4284693600 cites W2794284562 @default.
- W4284693600 cites W2884416373 @default.
- W4284693600 cites W2892846124 @default.
- W4284693600 cites W2895319015 @default.
- W4284693600 cites W2902625477 @default.
- W4284693600 cites W2911996816 @default.
- W4284693600 cites W2913308533 @default.
- W4284693600 cites W2915159483 @default.
- W4284693600 cites W2921403460 @default.
- W4284693600 cites W2949650786 @default.
- W4284693600 cites W2964081807 @default.
- W4284693600 cites W2989613844 @default.
- W4284693600 cites W3005426330 @default.
- W4284693600 cites W3010225408 @default.
- W4284693600 cites W3033196717 @default.
- W4284693600 cites W3036085849 @default.
- W4284693600 cites W3046472267 @default.
- W4284693600 cites W3091488873 @default.
- W4284693600 cites W3098070857 @default.
- W4284693600 cites W3102564565 @default.
- W4284693600 cites W3131866082 @default.
- W4284693600 cites W3148765418 @default.
- W4284693600 cites W3158308652 @default.
- W4284693600 cites W3163327790 @default.
- W4284693600 cites W3195147880 @default.
- W4284693600 cites W3211130117 @default.
- W4284693600 cites W4297775537 @default.
- W4284693600 cites W4300473403 @default.
- W4284693600 doi "https://doi.org/10.3389/fpls.2022.910878" @default.
- W4284693600 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35865283" @default.
- W4284693600 hasPublicationYear "2022" @default.
- W4284693600 type Work @default.
- W4284693600 citedByCount "5" @default.
- W4284693600 countsByYear W42846936002022 @default.
- W4284693600 countsByYear W42846936002023 @default.
- W4284693600 crossrefType "journal-article" @default.
- W4284693600 hasAuthorship W4284693600A5008428605 @default.
- W4284693600 hasAuthorship W4284693600A5027937292 @default.
- W4284693600 hasAuthorship W4284693600A5030347313 @default.
- W4284693600 hasAuthorship W4284693600A5060675361 @default.
- W4284693600 hasAuthorship W4284693600A5082934980 @default.
- W4284693600 hasBestOaLocation W42846936001 @default.
- W4284693600 hasConcept C114614502 @default.
- W4284693600 hasConcept C115961682 @default.
- W4284693600 hasConcept C119857082 @default.
- W4284693600 hasConcept C142724271 @default.
- W4284693600 hasConcept C150903083 @default.
- W4284693600 hasConcept C153180895 @default.
- W4284693600 hasConcept C154945302 @default.
- W4284693600 hasConcept C202444582 @default.
- W4284693600 hasConcept C2777212361 @default.
- W4284693600 hasConcept C2779134260 @default.
- W4284693600 hasConcept C2780476228 @default.
- W4284693600 hasConcept C2992726227 @default.
- W4284693600 hasConcept C3019235130 @default.
- W4284693600 hasConcept C33923547 @default.
- W4284693600 hasConcept C41008148 @default.
- W4284693600 hasConcept C45347329 @default.
- W4284693600 hasConcept C50644808 @default.
- W4284693600 hasConcept C6557445 @default.
- W4284693600 hasConcept C71924100 @default.
- W4284693600 hasConcept C74193536 @default.
- W4284693600 hasConcept C81363708 @default.
- W4284693600 hasConcept C86803240 @default.
- W4284693600 hasConcept C9652623 @default.
- W4284693600 hasConceptScore W4284693600C114614502 @default.
- W4284693600 hasConceptScore W4284693600C115961682 @default.
- W4284693600 hasConceptScore W4284693600C119857082 @default.
- W4284693600 hasConceptScore W4284693600C142724271 @default.
- W4284693600 hasConceptScore W4284693600C150903083 @default.
- W4284693600 hasConceptScore W4284693600C153180895 @default.
- W4284693600 hasConceptScore W4284693600C154945302 @default.
- W4284693600 hasConceptScore W4284693600C202444582 @default.
- W4284693600 hasConceptScore W4284693600C2777212361 @default.
- W4284693600 hasConceptScore W4284693600C2779134260 @default.