Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284694018> ?p ?o ?g. }
- W4284694018 endingPage "124956" @default.
- W4284694018 startingPage "124956" @default.
- W4284694018 abstract "The past decade has seen a renewed importance in developing heavy oil reserves due to the rapid raise in energy resources’ demand. The next decade is likely to witness a considerable rise in extracting these resources by thermally enhanced oil recovery methods. However, many hypotheses regarding the influence of reservoir mineral components on aquathermolysis reactions appear to be disputable. This paper outlines a new approach to model the aquathermolysis of Aschalcha’s reservoir rock heavy oil in the presence and absence of iron oxide nanoparticles combined with hydrogen donor in water steam atmosphere at 200, 250, and 300 °C using different physical and chemical methods. X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) have showed adsorbed spherical magnetite (Fe3O4) nanoparticles with less than 100 nm size on the studied rock minerals in hydrothermal conditions. Moreover, SARA (Saturates, Aromatics, Resins and Asphaltenes) analysis, gas analysis, and gas chromatography–mass spectrometry (GC–MS) have revealed that the obtained iron oxide nanoparticles exhibit their highest catalytic activity at 250 °C comparing to 200 and 300 °C respectively. What’s more, the obtained data have indicated a considerable decrease in resins (from 19.6 to 8.9 wt%) and asphaltenes compounds (from 5.1 to 1.5 wt%) in the presence of iron oxide nanoparticles comparing to the non-catalytic aquathermolysis of reservoir rock heavy oil. Contrary to resins and asphaltenes’ content, it has been found that saturates’ content increases significantly from 41.1% to 61.7% wt%. On another hand, the viscosity of the extracted oil has decreased almost 30 times and the gas proportion has doubled more than twice from 0.2 g to 0.43 g per 100 g of the reservoir rock sample. Interestingly, these results have been obtained in the presence of iron oxide nanoparticles at 250 °C, meanwhile, the same results have been found for the non-catalytic experiments at 300 °C. These findings confirm the significant contribution (synergistic effect) of iron oxide nanoparticles to stimulate the catalytic activity of the reservoir rock minerals. What’s more, the evidence from this study suggests that the presence of iron oxide nanoparticles in hydrothermal conditions at higher temperatures leads to the formation and adsorption of heavy coke-like carbenes, carboides, needle coke as well as carbon nanotubes of 100 nm size on the surface of the reservoir rock heavy oil as confirmed by thermal analysis (TG-DSC), SEM, and drop shape analysis (DSA) data." @default.
- W4284694018 created "2022-07-08" @default.
- W4284694018 creator A5001238733 @default.
- W4284694018 creator A5006184910 @default.
- W4284694018 creator A5010916300 @default.
- W4284694018 creator A5061752575 @default.
- W4284694018 creator A5091441793 @default.
- W4284694018 date "2022-11-01" @default.
- W4284694018 modified "2023-10-18" @default.
- W4284694018 title "Iron oxide nanoparticles impact on improving reservoir rock minerals catalytic effect on heavy oil aquathermolysis" @default.
- W4284694018 cites W1965599389 @default.
- W4284694018 cites W1982800752 @default.
- W4284694018 cites W1984865718 @default.
- W4284694018 cites W1988435450 @default.
- W4284694018 cites W1993217186 @default.
- W4284694018 cites W1999229743 @default.
- W4284694018 cites W2006940354 @default.
- W4284694018 cites W2010567784 @default.
- W4284694018 cites W2012435139 @default.
- W4284694018 cites W2014058255 @default.
- W4284694018 cites W2017461131 @default.
- W4284694018 cites W2020927572 @default.
- W4284694018 cites W2024293027 @default.
- W4284694018 cites W2029702562 @default.
- W4284694018 cites W2030395662 @default.
- W4284694018 cites W2033528320 @default.
- W4284694018 cites W2035339605 @default.
- W4284694018 cites W2049552578 @default.
- W4284694018 cites W2056352521 @default.
- W4284694018 cites W2057509531 @default.
- W4284694018 cites W2061850056 @default.
- W4284694018 cites W2072206605 @default.
- W4284694018 cites W2074996737 @default.
- W4284694018 cites W2075427487 @default.
- W4284694018 cites W2078152998 @default.
- W4284694018 cites W2082930552 @default.
- W4284694018 cites W2084669422 @default.
- W4284694018 cites W2116513083 @default.
- W4284694018 cites W2141156499 @default.
- W4284694018 cites W2196459425 @default.
- W4284694018 cites W2265466519 @default.
- W4284694018 cites W2318792759 @default.
- W4284694018 cites W2324457706 @default.
- W4284694018 cites W2330620435 @default.
- W4284694018 cites W2472848257 @default.
- W4284694018 cites W2501968992 @default.
- W4284694018 cites W2509145882 @default.
- W4284694018 cites W2586881426 @default.
- W4284694018 cites W2594538774 @default.
- W4284694018 cites W2603846502 @default.
- W4284694018 cites W2750806463 @default.
- W4284694018 cites W2767687173 @default.
- W4284694018 cites W2773594447 @default.
- W4284694018 cites W2789713965 @default.
- W4284694018 cites W2803664086 @default.
- W4284694018 cites W2804931250 @default.
- W4284694018 cites W2892888654 @default.
- W4284694018 cites W2906561054 @default.
- W4284694018 cites W2911491499 @default.
- W4284694018 cites W2914089899 @default.
- W4284694018 cites W2914118163 @default.
- W4284694018 cites W2915870713 @default.
- W4284694018 cites W2940605849 @default.
- W4284694018 cites W2949001644 @default.
- W4284694018 cites W2954916082 @default.
- W4284694018 cites W2999103407 @default.
- W4284694018 cites W3033884518 @default.
- W4284694018 cites W3036374317 @default.
- W4284694018 cites W3080472202 @default.
- W4284694018 cites W3134110539 @default.
- W4284694018 cites W3139088713 @default.
- W4284694018 cites W3156858605 @default.
- W4284694018 doi "https://doi.org/10.1016/j.fuel.2022.124956" @default.
- W4284694018 hasPublicationYear "2022" @default.
- W4284694018 type Work @default.
- W4284694018 citedByCount "18" @default.
- W4284694018 countsByYear W42846940182022 @default.
- W4284694018 countsByYear W42846940182023 @default.
- W4284694018 crossrefType "journal-article" @default.
- W4284694018 hasAuthorship W4284694018A5001238733 @default.
- W4284694018 hasAuthorship W4284694018A5006184910 @default.
- W4284694018 hasAuthorship W4284694018A5010916300 @default.
- W4284694018 hasAuthorship W4284694018A5061752575 @default.
- W4284694018 hasAuthorship W4284694018A5091441793 @default.
- W4284694018 hasConcept C127413603 @default.
- W4284694018 hasConcept C150394285 @default.
- W4284694018 hasConcept C155672457 @default.
- W4284694018 hasConcept C161790260 @default.
- W4284694018 hasConcept C178790620 @default.
- W4284694018 hasConcept C185592680 @default.
- W4284694018 hasConcept C191897082 @default.
- W4284694018 hasConcept C192562407 @default.
- W4284694018 hasConcept C2777697756 @default.
- W4284694018 hasConcept C2777781897 @default.
- W4284694018 hasConcept C2778889443 @default.
- W4284694018 hasConcept C42360764 @default.
- W4284694018 hasConcept C65324659 @default.
- W4284694018 hasConceptScore W4284694018C127413603 @default.