Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284694594> ?p ?o ?g. }
- W4284694594 endingPage "451" @default.
- W4284694594 startingPage "442" @default.
- W4284694594 abstract "We hypothesized that artificial intelligence (AI) models are more precise than standard models for predicting outcomes in acute-on-chronic liver failure (ACLF).We recruited ACLF patients between 2009 and 2020 from APASL-ACLF Research Consortium (AARC). Their clinical data, investigations and organ involvement were serially noted for 90-days and utilized for AI modelling. Data were split randomly into train and validation sets. Multiple AI models, MELD and AARC-Model, were created/optimized on train set. Outcome prediction abilities were evaluated on validation sets through area under the curve (AUC), accuracy, sensitivity, specificity and class precision.Among 2481 ACLF patients, 1501 in train set and 980 in validation set, the extreme gradient boost-cross-validated model (XGB-CV) demonstrated the highest AUC in train (0.999), validation (0.907) and overall sets (0.976) for predicting 30-day outcomes. The AUC and accuracy of the XGB-CV model (%Δ) were 7.0% and 6.9% higher than the standard day-7 AARC model (p < .001) and 12.8% and 10.6% higher than the day 7 MELD for 30-day predictions in validation set (p < .001). The XGB model had the highest AUC for 7- and 90-day predictions as well (p < .001). Day-7 creatinine, international normalized ratio (INR), circulatory failure, leucocyte count and day-4 sepsis were top features determining the 30-day outcomes. A simple decision tree incorporating creatinine, INR and circulatory failure was able to classify patients into high (~90%), intermediate (~60%) and low risk (~20%) of mortality. A web-based AARC-AI model was developed and validated twice with optimal performance for 30-day predictions.The performance of the AARC-AI model exceeds the standard models for outcome predictions in ACLF. An AI-based decision tree can reliably undertake severity-based stratification of patients for timely interventions." @default.
- W4284694594 created "2022-07-08" @default.
- W4284694594 creator A5001027718 @default.
- W4284694594 creator A5003945468 @default.
- W4284694594 creator A5007162667 @default.
- W4284694594 creator A5008698250 @default.
- W4284694594 creator A5017062093 @default.
- W4284694594 creator A5026415059 @default.
- W4284694594 creator A5027423486 @default.
- W4284694594 creator A5034157022 @default.
- W4284694594 creator A5036056002 @default.
- W4284694594 creator A5039554365 @default.
- W4284694594 creator A5040682018 @default.
- W4284694594 creator A5045640684 @default.
- W4284694594 creator A5049920455 @default.
- W4284694594 creator A5049972159 @default.
- W4284694594 creator A5051452877 @default.
- W4284694594 creator A5051716416 @default.
- W4284694594 creator A5052380086 @default.
- W4284694594 creator A5053309160 @default.
- W4284694594 creator A5064112439 @default.
- W4284694594 creator A5066084654 @default.
- W4284694594 creator A5066781318 @default.
- W4284694594 creator A5068252279 @default.
- W4284694594 creator A5075008412 @default.
- W4284694594 creator A5079007546 @default.
- W4284694594 creator A5080029899 @default.
- W4284694594 creator A5082850132 @default.
- W4284694594 creator A5089608392 @default.
- W4284694594 creator A5090077309 @default.
- W4284694594 creator A5090656568 @default.
- W4284694594 creator A9999999999 @default.
- W4284694594 date "2022-10-11" @default.
- W4284694594 modified "2023-09-28" @default.
- W4284694594 title "<scp>APASL‐ACLF</scp> Research Consortium–Artificial Intelligence ( <scp>AARC‐AI</scp> ) model precisely predicts outcomes in <scp>acute‐on‐chronic</scp> liver failure patients" @default.
- W4284694594 cites W1678356000 @default.
- W4284694594 cites W2007670274 @default.
- W4284694594 cites W2083844448 @default.
- W4284694594 cites W2088794999 @default.
- W4284694594 cites W2096451472 @default.
- W4284694594 cites W2118765712 @default.
- W4284694594 cites W2125677766 @default.
- W4284694594 cites W2129888542 @default.
- W4284694594 cites W2156665896 @default.
- W4284694594 cites W2342969114 @default.
- W4284694594 cites W2562251009 @default.
- W4284694594 cites W2569571716 @default.
- W4284694594 cites W2589805776 @default.
- W4284694594 cites W2604229429 @default.
- W4284694594 cites W2752200527 @default.
- W4284694594 cites W2791366411 @default.
- W4284694594 cites W2885120336 @default.
- W4284694594 cites W2910918587 @default.
- W4284694594 cites W2911964244 @default.
- W4284694594 cites W2955111715 @default.
- W4284694594 cites W2978294504 @default.
- W4284694594 cites W2991186116 @default.
- W4284694594 cites W3083804794 @default.
- W4284694594 cites W3093650933 @default.
- W4284694594 cites W3097224450 @default.
- W4284694594 cites W3102476541 @default.
- W4284694594 cites W3111137164 @default.
- W4284694594 cites W3173376668 @default.
- W4284694594 cites W4206677002 @default.
- W4284694594 cites W4211116959 @default.
- W4284694594 cites W4211190027 @default.
- W4284694594 cites W4302596785 @default.
- W4284694594 cites W590241356 @default.
- W4284694594 doi "https://doi.org/10.1111/liv.15361" @default.
- W4284694594 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35797245" @default.
- W4284694594 hasPublicationYear "2022" @default.
- W4284694594 type Work @default.
- W4284694594 citedByCount "3" @default.
- W4284694594 countsByYear W42846945942022 @default.
- W4284694594 countsByYear W42846945942023 @default.
- W4284694594 crossrefType "journal-article" @default.
- W4284694594 hasAuthorship W4284694594A5001027718 @default.
- W4284694594 hasAuthorship W4284694594A5003945468 @default.
- W4284694594 hasAuthorship W4284694594A5007162667 @default.
- W4284694594 hasAuthorship W4284694594A5008698250 @default.
- W4284694594 hasAuthorship W4284694594A5017062093 @default.
- W4284694594 hasAuthorship W4284694594A5026415059 @default.
- W4284694594 hasAuthorship W4284694594A5027423486 @default.
- W4284694594 hasAuthorship W4284694594A5034157022 @default.
- W4284694594 hasAuthorship W4284694594A5036056002 @default.
- W4284694594 hasAuthorship W4284694594A5039554365 @default.
- W4284694594 hasAuthorship W4284694594A5040682018 @default.
- W4284694594 hasAuthorship W4284694594A5045640684 @default.
- W4284694594 hasAuthorship W4284694594A5049920455 @default.
- W4284694594 hasAuthorship W4284694594A5049972159 @default.
- W4284694594 hasAuthorship W4284694594A5051452877 @default.
- W4284694594 hasAuthorship W4284694594A5051716416 @default.
- W4284694594 hasAuthorship W4284694594A5052380086 @default.
- W4284694594 hasAuthorship W4284694594A5053309160 @default.
- W4284694594 hasAuthorship W4284694594A5064112439 @default.
- W4284694594 hasAuthorship W4284694594A5066084654 @default.
- W4284694594 hasAuthorship W4284694594A5066781318 @default.
- W4284694594 hasAuthorship W4284694594A5068252279 @default.