Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284694799> ?p ?o ?g. }
- W4284694799 abstract "Artificial intelligence (AI) has been successfully exploited in diagnosing many mental disorders. Numerous systematic reviews summarize the evidence on the accuracy of AI models in diagnosing different mental disorders. This umbrella review aims to synthesize results of previous systematic reviews on the performance of AI models in diagnosing mental disorders. To identify relevant systematic reviews, we searched 11 electronic databases, checked the reference list of the included reviews, and checked the reviews that cited the included reviews. Two reviewers independently selected the relevant reviews, extracted the data from them, and appraised their quality. We synthesized the extracted data using the narrative approach. We included 15 systematic reviews of 852 citations identified. The included reviews assessed the performance of AI models in diagnosing Alzheimer's disease (n = 7), mild cognitive impairment (n = 6), schizophrenia (n = 3), bipolar disease (n = 2), autism spectrum disorder (n = 1), obsessive-compulsive disorder (n = 1), post-traumatic stress disorder (n = 1), and psychotic disorders (n = 1). The performance of the AI models in diagnosing these mental disorders ranged between 21% and 100%. AI technologies offer great promise in diagnosing mental health disorders. The reported performance metrics paint a vivid picture of a bright future for AI in this field. Healthcare professionals in the field should cautiously and consciously begin to explore the opportunities of AI-based tools for their daily routine. It would also be encouraging to see a greater number of meta-analyses and further systematic reviews on performance of AI models in diagnosing other common mental disorders such as depression and anxiety." @default.
- W4284694799 created "2022-07-08" @default.
- W4284694799 creator A5001592898 @default.
- W4284694799 creator A5020810020 @default.
- W4284694799 creator A5030066648 @default.
- W4284694799 creator A5053540130 @default.
- W4284694799 creator A5057926319 @default.
- W4284694799 creator A5065128237 @default.
- W4284694799 creator A5067060292 @default.
- W4284694799 creator A5080890851 @default.
- W4284694799 date "2022-07-07" @default.
- W4284694799 modified "2023-10-06" @default.
- W4284694799 title "The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review" @default.
- W4284694799 cites W2118202495 @default.
- W4284694799 cites W2520682644 @default.
- W4284694799 cites W2583500168 @default.
- W4284694799 cites W2597430849 @default.
- W4284694799 cites W2734832579 @default.
- W4284694799 cites W2734913551 @default.
- W4284694799 cites W2761181345 @default.
- W4284694799 cites W2766487143 @default.
- W4284694799 cites W2775173797 @default.
- W4284694799 cites W2800072875 @default.
- W4284694799 cites W2807282345 @default.
- W4284694799 cites W2886445457 @default.
- W4284694799 cites W2886773765 @default.
- W4284694799 cites W2888482633 @default.
- W4284694799 cites W2896782924 @default.
- W4284694799 cites W2913614159 @default.
- W4284694799 cites W2916945592 @default.
- W4284694799 cites W2951373364 @default.
- W4284694799 cites W2953303127 @default.
- W4284694799 cites W2972500508 @default.
- W4284694799 cites W2986786264 @default.
- W4284694799 cites W2990581109 @default.
- W4284694799 cites W2993242472 @default.
- W4284694799 cites W3007838968 @default.
- W4284694799 cites W3012078580 @default.
- W4284694799 cites W3025612358 @default.
- W4284694799 cites W3034674374 @default.
- W4284694799 cites W3037114781 @default.
- W4284694799 cites W3037254739 @default.
- W4284694799 cites W3045956845 @default.
- W4284694799 cites W3056360109 @default.
- W4284694799 cites W3082047811 @default.
- W4284694799 cites W3087538850 @default.
- W4284694799 cites W4211145950 @default.
- W4284694799 doi "https://doi.org/10.1038/s41746-022-00631-8" @default.
- W4284694799 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35798934" @default.
- W4284694799 hasPublicationYear "2022" @default.
- W4284694799 type Work @default.
- W4284694799 citedByCount "8" @default.
- W4284694799 countsByYear W42846947992022 @default.
- W4284694799 countsByYear W42846947992023 @default.
- W4284694799 crossrefType "journal-article" @default.
- W4284694799 hasAuthorship W4284694799A5001592898 @default.
- W4284694799 hasAuthorship W4284694799A5020810020 @default.
- W4284694799 hasAuthorship W4284694799A5030066648 @default.
- W4284694799 hasAuthorship W4284694799A5053540130 @default.
- W4284694799 hasAuthorship W4284694799A5057926319 @default.
- W4284694799 hasAuthorship W4284694799A5065128237 @default.
- W4284694799 hasAuthorship W4284694799A5067060292 @default.
- W4284694799 hasAuthorship W4284694799A5080890851 @default.
- W4284694799 hasBestOaLocation W42846947991 @default.
- W4284694799 hasConcept C118552586 @default.
- W4284694799 hasConcept C134362201 @default.
- W4284694799 hasConcept C154945302 @default.
- W4284694799 hasConcept C15744967 @default.
- W4284694799 hasConcept C169900460 @default.
- W4284694799 hasConcept C17744445 @default.
- W4284694799 hasConcept C189708586 @default.
- W4284694799 hasConcept C199539241 @default.
- W4284694799 hasConcept C205778803 @default.
- W4284694799 hasConcept C2776174506 @default.
- W4284694799 hasConcept C2776412080 @default.
- W4284694799 hasConcept C2778538070 @default.
- W4284694799 hasConcept C2779473830 @default.
- W4284694799 hasConcept C3020000205 @default.
- W4284694799 hasConcept C41008148 @default.
- W4284694799 hasConcept C542102704 @default.
- W4284694799 hasConcept C70410870 @default.
- W4284694799 hasConcept C71924100 @default.
- W4284694799 hasConceptScore W4284694799C118552586 @default.
- W4284694799 hasConceptScore W4284694799C134362201 @default.
- W4284694799 hasConceptScore W4284694799C154945302 @default.
- W4284694799 hasConceptScore W4284694799C15744967 @default.
- W4284694799 hasConceptScore W4284694799C169900460 @default.
- W4284694799 hasConceptScore W4284694799C17744445 @default.
- W4284694799 hasConceptScore W4284694799C189708586 @default.
- W4284694799 hasConceptScore W4284694799C199539241 @default.
- W4284694799 hasConceptScore W4284694799C205778803 @default.
- W4284694799 hasConceptScore W4284694799C2776174506 @default.
- W4284694799 hasConceptScore W4284694799C2776412080 @default.
- W4284694799 hasConceptScore W4284694799C2778538070 @default.
- W4284694799 hasConceptScore W4284694799C2779473830 @default.
- W4284694799 hasConceptScore W4284694799C3020000205 @default.
- W4284694799 hasConceptScore W4284694799C41008148 @default.
- W4284694799 hasConceptScore W4284694799C542102704 @default.
- W4284694799 hasConceptScore W4284694799C70410870 @default.
- W4284694799 hasConceptScore W4284694799C71924100 @default.