Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284696872> ?p ?o ?g. }
- W4284696872 endingPage "102901" @default.
- W4284696872 startingPage "102901" @default.
- W4284696872 abstract "The simulation of vegetation dynamics is essential for guiding regional ecological remediation and environmental management. Recent progress in deep learning methods has provided possible solutions to vegetation simulations. The gated recurrent unit (GRU) is one of the latest deep learning algorithms that can effectively process dynamic data. However, static and dynamic data, which typically coexist in the datasets of vegetation dynamic changes, are typically processed indistinguishably. To efficiently extract spatiotemporal patterns and improve our ability to simulate potential vegetation changes, we introduced GRU into vegetation simulation and further amended the original structure of GRU according to the characteristics of the simulation dataset. The new model, the vegetation dynamics model (VDM), can independently process static and dynamic data using a more appropriate algorithm, thereby improving the simulation accuracy. Moreover, we presented a model test applied in the Luntai Desert-Oasis Ecotone in Northwest China and compared the performance of the VDM with baseline models. The results showed that the VDM produced a 7.51% higher coefficient of determination (R2) value, 7.51% higher adjusted R2 value, 16.67% lower mean squared error, and 10.78% lower mean absolute error than those of the GRU, which is the best baseline model. The proposed VDM is the first GRU-based simulation model of vegetation dynamics that has the potential to detect the time-order characteristics of dynamic factors by comprehensively considering the static information that affects vegetation changes. Moreover, the flexibility of the VDM, in combination with the wide availability of data from different data sources, aids the broader application of the VDM." @default.
- W4284696872 created "2022-07-08" @default.
- W4284696872 creator A5011568766 @default.
- W4284696872 creator A5015368950 @default.
- W4284696872 creator A5017709527 @default.
- W4284696872 creator A5052774470 @default.
- W4284696872 creator A5066805987 @default.
- W4284696872 creator A5068058041 @default.
- W4284696872 creator A5081036659 @default.
- W4284696872 date "2022-08-01" @default.
- W4284696872 modified "2023-10-16" @default.
- W4284696872 title "Simulation model of vegetation dynamics by combining static and dynamic data using the gated recurrent unit neural network-based method" @default.
- W4284696872 cites W1966198712 @default.
- W4284696872 cites W1977078014 @default.
- W4284696872 cites W1988671804 @default.
- W4284696872 cites W1991505668 @default.
- W4284696872 cites W1998302315 @default.
- W4284696872 cites W2006208893 @default.
- W4284696872 cites W2007646266 @default.
- W4284696872 cites W2018160440 @default.
- W4284696872 cites W2020018978 @default.
- W4284696872 cites W2020514916 @default.
- W4284696872 cites W2022184919 @default.
- W4284696872 cites W2044781495 @default.
- W4284696872 cites W2056237915 @default.
- W4284696872 cites W2058963764 @default.
- W4284696872 cites W2067469834 @default.
- W4284696872 cites W2076245587 @default.
- W4284696872 cites W2079454091 @default.
- W4284696872 cites W2102148524 @default.
- W4284696872 cites W2107878631 @default.
- W4284696872 cites W2116261113 @default.
- W4284696872 cites W2118023920 @default.
- W4284696872 cites W2146272590 @default.
- W4284696872 cites W2148269537 @default.
- W4284696872 cites W2150918587 @default.
- W4284696872 cites W2153989276 @default.
- W4284696872 cites W2172009270 @default.
- W4284696872 cites W2282102599 @default.
- W4284696872 cites W2410883106 @default.
- W4284696872 cites W2586347713 @default.
- W4284696872 cites W2610521338 @default.
- W4284696872 cites W2618530766 @default.
- W4284696872 cites W2739349903 @default.
- W4284696872 cites W2765453548 @default.
- W4284696872 cites W2780388729 @default.
- W4284696872 cites W2787931125 @default.
- W4284696872 cites W2800806563 @default.
- W4284696872 cites W2884118727 @default.
- W4284696872 cites W2888842680 @default.
- W4284696872 cites W2894712623 @default.
- W4284696872 cites W2911311508 @default.
- W4284696872 cites W2922248185 @default.
- W4284696872 cites W2964199361 @default.
- W4284696872 cites W3012931081 @default.
- W4284696872 cites W3024674663 @default.
- W4284696872 doi "https://doi.org/10.1016/j.jag.2022.102901" @default.
- W4284696872 hasPublicationYear "2022" @default.
- W4284696872 type Work @default.
- W4284696872 citedByCount "0" @default.
- W4284696872 crossrefType "journal-article" @default.
- W4284696872 hasAuthorship W4284696872A5011568766 @default.
- W4284696872 hasAuthorship W4284696872A5015368950 @default.
- W4284696872 hasAuthorship W4284696872A5017709527 @default.
- W4284696872 hasAuthorship W4284696872A5052774470 @default.
- W4284696872 hasAuthorship W4284696872A5066805987 @default.
- W4284696872 hasAuthorship W4284696872A5068058041 @default.
- W4284696872 hasAuthorship W4284696872A5081036659 @default.
- W4284696872 hasBestOaLocation W42846968721 @default.
- W4284696872 hasConcept C105795698 @default.
- W4284696872 hasConcept C108583219 @default.
- W4284696872 hasConcept C111919701 @default.
- W4284696872 hasConcept C119857082 @default.
- W4284696872 hasConcept C124101348 @default.
- W4284696872 hasConcept C139945424 @default.
- W4284696872 hasConcept C142724271 @default.
- W4284696872 hasConcept C154945302 @default.
- W4284696872 hasConcept C18903297 @default.
- W4284696872 hasConcept C197298091 @default.
- W4284696872 hasConcept C199360897 @default.
- W4284696872 hasConcept C199877563 @default.
- W4284696872 hasConcept C2776133958 @default.
- W4284696872 hasConcept C2778091200 @default.
- W4284696872 hasConcept C2780598303 @default.
- W4284696872 hasConcept C33923547 @default.
- W4284696872 hasConcept C41008148 @default.
- W4284696872 hasConcept C50644808 @default.
- W4284696872 hasConcept C71924100 @default.
- W4284696872 hasConcept C86803240 @default.
- W4284696872 hasConcept C98045186 @default.
- W4284696872 hasConceptScore W4284696872C105795698 @default.
- W4284696872 hasConceptScore W4284696872C108583219 @default.
- W4284696872 hasConceptScore W4284696872C111919701 @default.
- W4284696872 hasConceptScore W4284696872C119857082 @default.
- W4284696872 hasConceptScore W4284696872C124101348 @default.
- W4284696872 hasConceptScore W4284696872C139945424 @default.
- W4284696872 hasConceptScore W4284696872C142724271 @default.
- W4284696872 hasConceptScore W4284696872C154945302 @default.