Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284698894> ?p ?o ?g. }
- W4284698894 endingPage "127901" @default.
- W4284698894 startingPage "127901" @default.
- W4284698894 abstract "The parameters of traffic flow model are important to the management and control of urban road network. In order to more accurately describe the actual operation of traffic flow in urban road network, this paper proposes a nonlinear macroscopic traffic flow model containing unknown time-varying multi-parameter on the basis of the steady-state and dynamic characteristics of traffic flow, and designs a time-varying multi-parameter iterative learning identification strategy by using the inherent repetitive characteristics of traffic flow. In the finite time interval, the iterative learning identification strategy is used to transform the parameter identification problem into the optimal tracking control problem, so that the number of queuing vehicles at each entrance of intersection tends to the true value, thus improving the accuracy of the model. Finally, the convergence of the algorithm is proved by a strict theoretical derivation, and the effectiveness of the method is further verified by simulation experiments using the model-based control method." @default.
- W4284698894 created "2022-07-08" @default.
- W4284698894 creator A5022970665 @default.
- W4284698894 creator A5054521710 @default.
- W4284698894 creator A5074977029 @default.
- W4284698894 date "2022-10-01" @default.
- W4284698894 modified "2023-10-06" @default.
- W4284698894 title "An iterative learning identification strategy for nonlinear macroscopic traffic flow model" @default.
- W4284698894 cites W1858809761 @default.
- W4284698894 cites W1967265404 @default.
- W4284698894 cites W1994197355 @default.
- W4284698894 cites W2001789842 @default.
- W4284698894 cites W2005274993 @default.
- W4284698894 cites W2040159093 @default.
- W4284698894 cites W2061385893 @default.
- W4284698894 cites W2079988132 @default.
- W4284698894 cites W2089049749 @default.
- W4284698894 cites W2091801707 @default.
- W4284698894 cites W2093921901 @default.
- W4284698894 cites W2115156199 @default.
- W4284698894 cites W2146396918 @default.
- W4284698894 cites W2194470921 @default.
- W4284698894 cites W2217952511 @default.
- W4284698894 cites W2419335852 @default.
- W4284698894 cites W2738804513 @default.
- W4284698894 cites W2779621557 @default.
- W4284698894 cites W2802593279 @default.
- W4284698894 cites W2807277493 @default.
- W4284698894 cites W2907400790 @default.
- W4284698894 cites W2909193320 @default.
- W4284698894 cites W2990825163 @default.
- W4284698894 cites W3044015199 @default.
- W4284698894 cites W3096793286 @default.
- W4284698894 cites W3165078976 @default.
- W4284698894 doi "https://doi.org/10.1016/j.physa.2022.127901" @default.
- W4284698894 hasPublicationYear "2022" @default.
- W4284698894 type Work @default.
- W4284698894 citedByCount "0" @default.
- W4284698894 crossrefType "journal-article" @default.
- W4284698894 hasAuthorship W4284698894A5022970665 @default.
- W4284698894 hasAuthorship W4284698894A5054521710 @default.
- W4284698894 hasAuthorship W4284698894A5074977029 @default.
- W4284698894 hasConcept C11413529 @default.
- W4284698894 hasConcept C114614502 @default.
- W4284698894 hasConcept C116834253 @default.
- W4284698894 hasConcept C117619785 @default.
- W4284698894 hasConcept C121332964 @default.
- W4284698894 hasConcept C126255220 @default.
- W4284698894 hasConcept C127413603 @default.
- W4284698894 hasConcept C146978453 @default.
- W4284698894 hasConcept C154945302 @default.
- W4284698894 hasConcept C158622935 @default.
- W4284698894 hasConcept C159694833 @default.
- W4284698894 hasConcept C162324750 @default.
- W4284698894 hasConcept C176715033 @default.
- W4284698894 hasConcept C205269179 @default.
- W4284698894 hasConcept C207512268 @default.
- W4284698894 hasConcept C22684755 @default.
- W4284698894 hasConcept C2524010 @default.
- W4284698894 hasConcept C2775924081 @default.
- W4284698894 hasConcept C2777303404 @default.
- W4284698894 hasConcept C2778067643 @default.
- W4284698894 hasConcept C31258907 @default.
- W4284698894 hasConcept C33923547 @default.
- W4284698894 hasConcept C38349280 @default.
- W4284698894 hasConcept C38652104 @default.
- W4284698894 hasConcept C41008148 @default.
- W4284698894 hasConcept C47446073 @default.
- W4284698894 hasConcept C50522688 @default.
- W4284698894 hasConcept C59822182 @default.
- W4284698894 hasConcept C62520636 @default.
- W4284698894 hasConcept C64543145 @default.
- W4284698894 hasConcept C79403827 @default.
- W4284698894 hasConcept C86803240 @default.
- W4284698894 hasConceptScore W4284698894C11413529 @default.
- W4284698894 hasConceptScore W4284698894C114614502 @default.
- W4284698894 hasConceptScore W4284698894C116834253 @default.
- W4284698894 hasConceptScore W4284698894C117619785 @default.
- W4284698894 hasConceptScore W4284698894C121332964 @default.
- W4284698894 hasConceptScore W4284698894C126255220 @default.
- W4284698894 hasConceptScore W4284698894C127413603 @default.
- W4284698894 hasConceptScore W4284698894C146978453 @default.
- W4284698894 hasConceptScore W4284698894C154945302 @default.
- W4284698894 hasConceptScore W4284698894C158622935 @default.
- W4284698894 hasConceptScore W4284698894C159694833 @default.
- W4284698894 hasConceptScore W4284698894C162324750 @default.
- W4284698894 hasConceptScore W4284698894C176715033 @default.
- W4284698894 hasConceptScore W4284698894C205269179 @default.
- W4284698894 hasConceptScore W4284698894C207512268 @default.
- W4284698894 hasConceptScore W4284698894C22684755 @default.
- W4284698894 hasConceptScore W4284698894C2524010 @default.
- W4284698894 hasConceptScore W4284698894C2775924081 @default.
- W4284698894 hasConceptScore W4284698894C2777303404 @default.
- W4284698894 hasConceptScore W4284698894C2778067643 @default.
- W4284698894 hasConceptScore W4284698894C31258907 @default.
- W4284698894 hasConceptScore W4284698894C33923547 @default.
- W4284698894 hasConceptScore W4284698894C38349280 @default.
- W4284698894 hasConceptScore W4284698894C38652104 @default.