Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284698961> ?p ?o ?g. }
- W4284698961 abstract "Keyphrases can concisely describe the high-level topics discussed in a document that usually possesses hierarchical topic structures. Thus, it is crucial to understand the hierarchical topic structures and employ it to guide the keyphrase identification. However, integrating the hierarchical topic information into a deep keyphrase generation model is unexplored. In this paper, we focus on how to effectively exploit the hierarchical topic to improve the keyphrase generation performance (HTKG). Specifically, we propose a novel hierarchical topic-guided variational neural sequence generation method for keyphrase generation, which consists of two major modules: a neural hierarchical topic model that learns the latent topic tree across the whole corpus of documents, and a variational neural keyphrase generation model to generate keyphrases under hierarchical topic guidance. Finally, these two modules are jointly trained to help them learn complementary information from each other. To the best of our knowledge, this is the first attempt to leverage the neural hierarchical topic to guide keyphrase generation. The experimental results demonstrate that our method significantly outperforms the existing state-of-the-art methods across five benchmark datasets." @default.
- W4284698961 created "2022-07-08" @default.
- W4284698961 creator A5046924740 @default.
- W4284698961 creator A5054256790 @default.
- W4284698961 creator A5063447635 @default.
- W4284698961 creator A5063677636 @default.
- W4284698961 creator A5087641779 @default.
- W4284698961 date "2022-07-06" @default.
- W4284698961 modified "2023-10-16" @default.
- W4284698961 title "HTKG" @default.
- W4284698961 cites W1490343430 @default.
- W4284698961 cites W1880262756 @default.
- W4284698961 cites W1973137995 @default.
- W4284698961 cites W2003899488 @default.
- W4284698961 cites W2030903088 @default.
- W4284698961 cites W2045181608 @default.
- W4284698961 cites W2129557600 @default.
- W4284698961 cites W2136075087 @default.
- W4284698961 cites W2145049651 @default.
- W4284698961 cites W2150286230 @default.
- W4284698961 cites W2157331557 @default.
- W4284698961 cites W2167329753 @default.
- W4284698961 cites W2566297247 @default.
- W4284698961 cites W2604912255 @default.
- W4284698961 cites W2740811004 @default.
- W4284698961 cites W2742094278 @default.
- W4284698961 cites W2767253343 @default.
- W4284698961 cites W2767322471 @default.
- W4284698961 cites W2783786042 @default.
- W4284698961 cites W2888766462 @default.
- W4284698961 cites W2914076857 @default.
- W4284698961 cites W2932847124 @default.
- W4284698961 cites W2949647400 @default.
- W4284698961 cites W2949877232 @default.
- W4284698961 cites W2949963192 @default.
- W4284698961 cites W2962974924 @default.
- W4284698961 cites W2963223306 @default.
- W4284698961 cites W2963245897 @default.
- W4284698961 cites W2963265326 @default.
- W4284698961 cites W2963269843 @default.
- W4284698961 cites W2963275829 @default.
- W4284698961 cites W2963411289 @default.
- W4284698961 cites W2963506530 @default.
- W4284698961 cites W2963531963 @default.
- W4284698961 cites W2973226110 @default.
- W4284698961 cites W3022187094 @default.
- W4284698961 cites W3034379969 @default.
- W4284698961 cites W3034735823 @default.
- W4284698961 cites W3035328829 @default.
- W4284698961 cites W3113450614 @default.
- W4284698961 cites W3153071038 @default.
- W4284698961 cites W3156614760 @default.
- W4284698961 cites W3159075545 @default.
- W4284698961 cites W3173180518 @default.
- W4284698961 cites W3173799534 @default.
- W4284698961 cites W3177067286 @default.
- W4284698961 cites W3199768079 @default.
- W4284698961 cites W3211683577 @default.
- W4284698961 cites W4288280762 @default.
- W4284698961 doi "https://doi.org/10.1145/3477495.3531990" @default.
- W4284698961 hasPublicationYear "2022" @default.
- W4284698961 type Work @default.
- W4284698961 citedByCount "3" @default.
- W4284698961 countsByYear W42846989612022 @default.
- W4284698961 countsByYear W42846989612023 @default.
- W4284698961 crossrefType "proceedings-article" @default.
- W4284698961 hasAuthorship W4284698961A5046924740 @default.
- W4284698961 hasAuthorship W4284698961A5054256790 @default.
- W4284698961 hasAuthorship W4284698961A5063447635 @default.
- W4284698961 hasAuthorship W4284698961A5063677636 @default.
- W4284698961 hasAuthorship W4284698961A5087641779 @default.
- W4284698961 hasConcept C113174947 @default.
- W4284698961 hasConcept C116834253 @default.
- W4284698961 hasConcept C119857082 @default.
- W4284698961 hasConcept C120665830 @default.
- W4284698961 hasConcept C121332964 @default.
- W4284698961 hasConcept C124101348 @default.
- W4284698961 hasConcept C13280743 @default.
- W4284698961 hasConcept C134306372 @default.
- W4284698961 hasConcept C144986985 @default.
- W4284698961 hasConcept C153083717 @default.
- W4284698961 hasConcept C154945302 @default.
- W4284698961 hasConcept C165696696 @default.
- W4284698961 hasConcept C171686336 @default.
- W4284698961 hasConcept C185798385 @default.
- W4284698961 hasConcept C192209626 @default.
- W4284698961 hasConcept C204321447 @default.
- W4284698961 hasConcept C205649164 @default.
- W4284698961 hasConcept C33923547 @default.
- W4284698961 hasConcept C38652104 @default.
- W4284698961 hasConcept C41008148 @default.
- W4284698961 hasConcept C59822182 @default.
- W4284698961 hasConcept C86803240 @default.
- W4284698961 hasConceptScore W4284698961C113174947 @default.
- W4284698961 hasConceptScore W4284698961C116834253 @default.
- W4284698961 hasConceptScore W4284698961C119857082 @default.
- W4284698961 hasConceptScore W4284698961C120665830 @default.
- W4284698961 hasConceptScore W4284698961C121332964 @default.
- W4284698961 hasConceptScore W4284698961C124101348 @default.
- W4284698961 hasConceptScore W4284698961C13280743 @default.