Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284711157> ?p ?o ?g. }
- W4284711157 endingPage "102412" @default.
- W4284711157 startingPage "102412" @default.
- W4284711157 abstract "Personalized orders bring challenges to the production paradigm, and there is an urgent need for the dynamic responsiveness and self-adjustment ability of the workshop. Traditional dispatching rules and heuristic algorithms solve the production planning and control problems by making schedules. However, the previous methods cannot work well in a changeable workshop environment when encountering a large number of stochastic disturbances of orders and resources. Recently, the potential of artificial intelligence (AI) algorithms in solving the dynamic scheduling problem has attracted researchers' attention. Therefore, this paper presents a multi-agent manufacturing system based on deep reinforcement learning (DRL), which integrates the self-organization mechanism and self-learning strategy. Firstly, the manufacturing equipment in the workshop is constructed as an equipment agent with the support of edge computing node, and an improved contract network protocol (CNP) is applied to guide the cooperation and competition among multiple agents, so as to complete personalized orders efficiently. Secondly, a multi-layer perceptron is employed to establish the decision-making module called AI scheduler inside the equipment agent. According to the perceived workshop state information, AI scheduler intelligently generates an optimal production strategy to perform task allocation. Then, based on the collected sample trajectories of scheduling process, AI scheduler is periodically trained and updated through the proximal policy optimization (PPO) algorithm to improve its decision-making performance. Finally, in the multi-agent manufacturing system testbed, dynamic events such as stochastic job insertions and unpredictable machine failures are considered in the verification experiments. The experimental results show that the proposed method is capable of obtaining the scheduling solutions that meet various performance metrics, as well as dealing with resource or task disturbances efficiently and autonomously." @default.
- W4284711157 created "2022-07-08" @default.
- W4284711157 creator A5000275991 @default.
- W4284711157 creator A5002524574 @default.
- W4284711157 creator A5017880871 @default.
- W4284711157 creator A5019142552 @default.
- W4284711157 creator A5090351750 @default.
- W4284711157 date "2022-12-01" @default.
- W4284711157 modified "2023-10-14" @default.
- W4284711157 title "Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems" @default.
- W4284711157 cites W1075229800 @default.
- W4284711157 cites W1974520872 @default.
- W4284711157 cites W1977578104 @default.
- W4284711157 cites W1981322468 @default.
- W4284711157 cites W1987781906 @default.
- W4284711157 cites W1999445878 @default.
- W4284711157 cites W2016248939 @default.
- W4284711157 cites W2051448938 @default.
- W4284711157 cites W2057285547 @default.
- W4284711157 cites W2076077216 @default.
- W4284711157 cites W2076186975 @default.
- W4284711157 cites W2169618379 @default.
- W4284711157 cites W2422048228 @default.
- W4284711157 cites W2508346077 @default.
- W4284711157 cites W2618749399 @default.
- W4284711157 cites W2674963269 @default.
- W4284711157 cites W2747092504 @default.
- W4284711157 cites W2786518188 @default.
- W4284711157 cites W2788276261 @default.
- W4284711157 cites W2792083814 @default.
- W4284711157 cites W2793262237 @default.
- W4284711157 cites W2801016318 @default.
- W4284711157 cites W2802562461 @default.
- W4284711157 cites W2891372415 @default.
- W4284711157 cites W2895278220 @default.
- W4284711157 cites W2908261578 @default.
- W4284711157 cites W2932097000 @default.
- W4284711157 cites W2938157874 @default.
- W4284711157 cites W2970073360 @default.
- W4284711157 cites W2999659334 @default.
- W4284711157 cites W3021726999 @default.
- W4284711157 cites W3028799312 @default.
- W4284711157 cites W3042915245 @default.
- W4284711157 cites W3109226628 @default.
- W4284711157 cites W3134664017 @default.
- W4284711157 cites W3168201137 @default.
- W4284711157 cites W3173585049 @default.
- W4284711157 cites W3209314316 @default.
- W4284711157 cites W4248738291 @default.
- W4284711157 cites W4256613398 @default.
- W4284711157 doi "https://doi.org/10.1016/j.rcim.2022.102412" @default.
- W4284711157 hasPublicationYear "2022" @default.
- W4284711157 type Work @default.
- W4284711157 citedByCount "38" @default.
- W4284711157 countsByYear W42847111572022 @default.
- W4284711157 countsByYear W42847111572023 @default.
- W4284711157 crossrefType "journal-article" @default.
- W4284711157 hasAuthorship W4284711157A5000275991 @default.
- W4284711157 hasAuthorship W4284711157A5002524574 @default.
- W4284711157 hasAuthorship W4284711157A5017880871 @default.
- W4284711157 hasAuthorship W4284711157A5019142552 @default.
- W4284711157 hasAuthorship W4284711157A5090351750 @default.
- W4284711157 hasConcept C111919701 @default.
- W4284711157 hasConcept C119857082 @default.
- W4284711157 hasConcept C120314980 @default.
- W4284711157 hasConcept C127413603 @default.
- W4284711157 hasConcept C13736549 @default.
- W4284711157 hasConcept C154945302 @default.
- W4284711157 hasConcept C158336966 @default.
- W4284711157 hasConcept C206729178 @default.
- W4284711157 hasConcept C21547014 @default.
- W4284711157 hasConcept C2777243215 @default.
- W4284711157 hasConcept C31258907 @default.
- W4284711157 hasConcept C31395832 @default.
- W4284711157 hasConcept C41008148 @default.
- W4284711157 hasConcept C42475967 @default.
- W4284711157 hasConcept C55416958 @default.
- W4284711157 hasConcept C68387754 @default.
- W4284711157 hasConcept C97541855 @default.
- W4284711157 hasConceptScore W4284711157C111919701 @default.
- W4284711157 hasConceptScore W4284711157C119857082 @default.
- W4284711157 hasConceptScore W4284711157C120314980 @default.
- W4284711157 hasConceptScore W4284711157C127413603 @default.
- W4284711157 hasConceptScore W4284711157C13736549 @default.
- W4284711157 hasConceptScore W4284711157C154945302 @default.
- W4284711157 hasConceptScore W4284711157C158336966 @default.
- W4284711157 hasConceptScore W4284711157C206729178 @default.
- W4284711157 hasConceptScore W4284711157C21547014 @default.
- W4284711157 hasConceptScore W4284711157C2777243215 @default.
- W4284711157 hasConceptScore W4284711157C31258907 @default.
- W4284711157 hasConceptScore W4284711157C31395832 @default.
- W4284711157 hasConceptScore W4284711157C41008148 @default.
- W4284711157 hasConceptScore W4284711157C42475967 @default.
- W4284711157 hasConceptScore W4284711157C55416958 @default.
- W4284711157 hasConceptScore W4284711157C68387754 @default.
- W4284711157 hasConceptScore W4284711157C97541855 @default.
- W4284711157 hasFunder F4320321001 @default.
- W4284711157 hasFunder F4320321540 @default.