Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284884449> ?p ?o ?g. }
- W4284884449 endingPage "111583" @default.
- W4284884449 startingPage "111583" @default.
- W4284884449 abstract "This work aims to improve the quality control of gasoline direct injection pumps through the application of artificial intelligence on a dedicated test bench. First, the forecasting capability of the proposed neural architectures are evaluated by comparing the predictions with the experimental measurement of the flow rate delivered by the pump. The second part of the herein study is focused on evaluating the possibility of replacing a physical sensor (i.e torque meter), since, due to resonance phenomenon, its breakage has already led the partner company to extensive damage to the test bench. Among the tested structures, a Nonlinear Autoregressive Exogenous (NARX) architecture and a Long Short-Term Memory (LSTM), respectively, proved to be valid alternative to the physical sensors. At the range of interest, the neural structures showed, with respect to the experimental data, percentage errors always lower than the limit imposed by the manufactures, i.e. equals to 10%. Preliminary activities allowed to evaluate the impact of the single measured quantities and to optimize the performance of the proposed artificial architectures. All this features potentially allow to reduce and/or eliminate unnecessary physical sensors thus reducing costs and operating times." @default.
- W4284884449 created "2022-07-09" @default.
- W4284884449 creator A5022158240 @default.
- W4284884449 creator A5040259992 @default.
- W4284884449 creator A5075269533 @default.
- W4284884449 creator A5091112039 @default.
- W4284884449 date "2022-08-01" @default.
- W4284884449 modified "2023-10-14" @default.
- W4284884449 title "From real to virtual sensors, an artificial intelligence approach for the industrial phase of end-of-line quality control of GDI pumps" @default.
- W4284884449 cites W108417620 @default.
- W4284884449 cites W2064675550 @default.
- W4284884449 cites W2101839471 @default.
- W4284884449 cites W2171800554 @default.
- W4284884449 cites W2287279778 @default.
- W4284884449 cites W2555184324 @default.
- W4284884449 cites W2564947831 @default.
- W4284884449 cites W2600563756 @default.
- W4284884449 cites W2747014259 @default.
- W4284884449 cites W2751418040 @default.
- W4284884449 cites W2753352458 @default.
- W4284884449 cites W2756789966 @default.
- W4284884449 cites W2758361465 @default.
- W4284884449 cites W2768108646 @default.
- W4284884449 cites W2773444615 @default.
- W4284884449 cites W2789102937 @default.
- W4284884449 cites W2791416295 @default.
- W4284884449 cites W2794081072 @default.
- W4284884449 cites W2796358601 @default.
- W4284884449 cites W2804879845 @default.
- W4284884449 cites W2810084952 @default.
- W4284884449 cites W2884096742 @default.
- W4284884449 cites W2885195348 @default.
- W4284884449 cites W2900048091 @default.
- W4284884449 cites W2913839710 @default.
- W4284884449 cites W2921514808 @default.
- W4284884449 cites W2941078764 @default.
- W4284884449 cites W2942343496 @default.
- W4284884449 cites W2944851425 @default.
- W4284884449 cites W2950694741 @default.
- W4284884449 cites W2971623692 @default.
- W4284884449 cites W2976749982 @default.
- W4284884449 cites W2980617254 @default.
- W4284884449 cites W2989925413 @default.
- W4284884449 cites W2995705130 @default.
- W4284884449 cites W3004417816 @default.
- W4284884449 cites W3006867203 @default.
- W4284884449 cites W3008819860 @default.
- W4284884449 cites W3017056835 @default.
- W4284884449 cites W3017346274 @default.
- W4284884449 cites W3038760092 @default.
- W4284884449 cites W3046139958 @default.
- W4284884449 cites W3083782034 @default.
- W4284884449 cites W3090238656 @default.
- W4284884449 cites W3090661556 @default.
- W4284884449 cites W3100777112 @default.
- W4284884449 cites W3110101432 @default.
- W4284884449 cites W3113008830 @default.
- W4284884449 cites W3117170271 @default.
- W4284884449 cites W3125640105 @default.
- W4284884449 cites W3132015041 @default.
- W4284884449 cites W3142399536 @default.
- W4284884449 cites W3150730554 @default.
- W4284884449 cites W3157138286 @default.
- W4284884449 cites W3158233180 @default.
- W4284884449 cites W3163756550 @default.
- W4284884449 cites W3182706339 @default.
- W4284884449 cites W3214011033 @default.
- W4284884449 cites W4200206346 @default.
- W4284884449 cites W4200535905 @default.
- W4284884449 cites W4211004135 @default.
- W4284884449 cites W4254905548 @default.
- W4284884449 cites W4280586728 @default.
- W4284884449 doi "https://doi.org/10.1016/j.measurement.2022.111583" @default.
- W4284884449 hasPublicationYear "2022" @default.
- W4284884449 type Work @default.
- W4284884449 citedByCount "5" @default.
- W4284884449 countsByYear W42848844492023 @default.
- W4284884449 crossrefType "journal-article" @default.
- W4284884449 hasAuthorship W4284884449A5022158240 @default.
- W4284884449 hasAuthorship W4284884449A5040259992 @default.
- W4284884449 hasAuthorship W4284884449A5075269533 @default.
- W4284884449 hasAuthorship W4284884449A5091112039 @default.
- W4284884449 hasConcept C111919701 @default.
- W4284884449 hasConcept C115575686 @default.
- W4284884449 hasConcept C121332964 @default.
- W4284884449 hasConcept C127413603 @default.
- W4284884449 hasConcept C133731056 @default.
- W4284884449 hasConcept C144171764 @default.
- W4284884449 hasConcept C154945302 @default.
- W4284884449 hasConcept C171146098 @default.
- W4284884449 hasConcept C2776266606 @default.
- W4284884449 hasConcept C41008148 @default.
- W4284884449 hasConcept C42536954 @default.
- W4284884449 hasConcept C44154836 @default.
- W4284884449 hasConcept C50644808 @default.
- W4284884449 hasConcept C78519656 @default.
- W4284884449 hasConcept C97355855 @default.
- W4284884449 hasConcept C98045186 @default.