Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284886338> ?p ?o ?g. }
- W4284886338 abstract "Although awareness and treatment rates of hypertension have significantly improved in recent years, the prevalence of undiagnosed and untreated hypertension remains a major public health concern for Indian policymakers. While the urban-rural variation in the prevalence, diagnosis, control, and treatment of hypertension is reasonably well-documented, the explanation behind such variation remains poorly understood given the dearth of studies conducted on exploring the determinants of the rural-urban gap in the prevalence of undiagnosed, untreated, and uncontrolled hypertension in India. In view of this research gap, our paper aims to decompose the inter-group differences between rural and urban areas in undiagnosed, untreated, and undertreated hypertension among older adults in India into the major contributing factors.Nationally representative data collected in the Longitudinal Ageing Study of India, Wave-1 (2017-18), was utilized for this study. Maximum-likelihood binary logistic-regression models were employed to capture the crude and adjusted associations between the place of residence and prevalence of undiagnosed, untreated, and undertreated hypertension. Fairlie's decomposition technique was used to decompose the inter-group differences between rural and urban residents in the prevalence of undiagnosed, untreated, and undertreated hypertension among the older population in India, into the major contributing factors, in order to explore the pathways through which these differences manifest.The overall prevalence rates of undiagnosed, untreated, and undertreated hypertension among older adults were 42.3%, 6%, and 18.7%, respectively. However, the prevalence of undiagnosed and untreated hypertension was higher in rural areas, by 12.4 and 1.7 percentage-points, respectively, while undertreated hypertension was more prevalent in the urban areas (by 7.2 percentage-points). The decomposition analysis explained roughly 41% and 34% of the urban advantage over rural areas in the case of undiagnosed and untreated hypertension, while it explained 51% of the urban disadvantage in respect of undertreated hypertension. The rural-urban differentials in education and comorbidities accounted for the majority of the explained rural disadvantage in the prevalence of undiagnosed hypertension, explaining 13.51% and 13.27% of the gap, respectively. The regional factor was found to be the major driver behind urban advantage in the prevalence of untreated hypertension, contributing 37.47% to the overall gap. In the case of undertreated hypertension, education, comorbidities, and tobacco consumption were the major contributors to the urban-rural inequality, which accounted for 12.3%, 10.6%, and 9.8% of the gap, respectively.Socio-economic and lifestyle factors seemed to contribute significantly to the urban-rural gap in undiagnosed, untreated and undertreated hypertension in India among older adults. There is an urgent need of creating awareness programmes for the early identification of hypertensive cases and regular treatment, particularly in under-serviced rural India. Interventions should be made targeting specific population groups to tackle inequality in healthcare utilization." @default.
- W4284886338 created "2022-07-09" @default.
- W4284886338 creator A5044107385 @default.
- W4284886338 creator A5045548358 @default.
- W4284886338 date "2022-07-08" @default.
- W4284886338 modified "2023-10-13" @default.
- W4284886338 title "Decomposing the rural–urban gap in the prevalence of undiagnosed, untreated and under-treated hypertension among older adults in India" @default.
- W4284886338 cites W1577001291 @default.
- W4284886338 cites W2016868949 @default.
- W4284886338 cites W2028825584 @default.
- W4284886338 cites W2029394297 @default.
- W4284886338 cites W2079004127 @default.
- W4284886338 cites W2082862321 @default.
- W4284886338 cites W2085363319 @default.
- W4284886338 cites W2090024638 @default.
- W4284886338 cites W2090621849 @default.
- W4284886338 cites W2091591655 @default.
- W4284886338 cites W2116717490 @default.
- W4284886338 cites W2133586862 @default.
- W4284886338 cites W2148875897 @default.
- W4284886338 cites W2149131800 @default.
- W4284886338 cites W2167272886 @default.
- W4284886338 cites W2275598282 @default.
- W4284886338 cites W2279986812 @default.
- W4284886338 cites W2321793650 @default.
- W4284886338 cites W2338216721 @default.
- W4284886338 cites W2418351339 @default.
- W4284886338 cites W2502548575 @default.
- W4284886338 cites W2550720962 @default.
- W4284886338 cites W2569387576 @default.
- W4284886338 cites W2596949802 @default.
- W4284886338 cites W2607153640 @default.
- W4284886338 cites W2622187301 @default.
- W4284886338 cites W2753051611 @default.
- W4284886338 cites W2764051598 @default.
- W4284886338 cites W2768267412 @default.
- W4284886338 cites W2774427173 @default.
- W4284886338 cites W2795857525 @default.
- W4284886338 cites W2889266241 @default.
- W4284886338 cites W2894599631 @default.
- W4284886338 cites W2915679210 @default.
- W4284886338 cites W2944994482 @default.
- W4284886338 cites W2946504778 @default.
- W4284886338 cites W3010514591 @default.
- W4284886338 cites W3016730909 @default.
- W4284886338 cites W3025238321 @default.
- W4284886338 cites W3045277301 @default.
- W4284886338 cites W3082692522 @default.
- W4284886338 cites W3091916200 @default.
- W4284886338 cites W3112660435 @default.
- W4284886338 cites W3118252656 @default.
- W4284886338 cites W3118603277 @default.
- W4284886338 cites W3121205238 @default.
- W4284886338 cites W3123547180 @default.
- W4284886338 cites W3152208963 @default.
- W4284886338 cites W3161549897 @default.
- W4284886338 cites W3181042863 @default.
- W4284886338 cites W3194023440 @default.
- W4284886338 cites W4300452961 @default.
- W4284886338 doi "https://doi.org/10.1186/s12889-022-13664-1" @default.
- W4284886338 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35799143" @default.
- W4284886338 hasPublicationYear "2022" @default.
- W4284886338 type Work @default.
- W4284886338 citedByCount "5" @default.
- W4284886338 countsByYear W42848863382022 @default.
- W4284886338 countsByYear W42848863382023 @default.
- W4284886338 crossrefType "journal-article" @default.
- W4284886338 hasAuthorship W4284886338A5044107385 @default.
- W4284886338 hasAuthorship W4284886338A5045548358 @default.
- W4284886338 hasBestOaLocation W42848863381 @default.
- W4284886338 hasConcept C107130276 @default.
- W4284886338 hasConcept C126322002 @default.
- W4284886338 hasConcept C129047720 @default.
- W4284886338 hasConcept C138816342 @default.
- W4284886338 hasConcept C140556311 @default.
- W4284886338 hasConcept C142724271 @default.
- W4284886338 hasConcept C144024400 @default.
- W4284886338 hasConcept C149923435 @default.
- W4284886338 hasConcept C151956035 @default.
- W4284886338 hasConcept C186079640 @default.
- W4284886338 hasConcept C187212893 @default.
- W4284886338 hasConcept C2776269092 @default.
- W4284886338 hasConcept C2908647359 @default.
- W4284886338 hasConcept C71924100 @default.
- W4284886338 hasConcept C74909509 @default.
- W4284886338 hasConcept C99454951 @default.
- W4284886338 hasConceptScore W4284886338C107130276 @default.
- W4284886338 hasConceptScore W4284886338C126322002 @default.
- W4284886338 hasConceptScore W4284886338C129047720 @default.
- W4284886338 hasConceptScore W4284886338C138816342 @default.
- W4284886338 hasConceptScore W4284886338C140556311 @default.
- W4284886338 hasConceptScore W4284886338C142724271 @default.
- W4284886338 hasConceptScore W4284886338C144024400 @default.
- W4284886338 hasConceptScore W4284886338C149923435 @default.
- W4284886338 hasConceptScore W4284886338C151956035 @default.
- W4284886338 hasConceptScore W4284886338C186079640 @default.
- W4284886338 hasConceptScore W4284886338C187212893 @default.
- W4284886338 hasConceptScore W4284886338C2776269092 @default.
- W4284886338 hasConceptScore W4284886338C2908647359 @default.
- W4284886338 hasConceptScore W4284886338C71924100 @default.