Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284889614> ?p ?o ?g. }
- W4284889614 endingPage "111597" @default.
- W4284889614 startingPage "111597" @default.
- W4284889614 abstract "Deep learning has achieved significant advances in the fault diagnosis of rotating machinery. However, it still suffers many challenges such as various working conditions, large environmental noise interference and insufficient effective data samples. Signal time–frequency analysis and feature transfer learning methods can help solve these problems. Combining wavelet packet transform (WPT) and multi-kernel maximum mean discrepancy (MK-MMD), this paper proposes a novel residual network (ResNet)-based deep transfer diagnosis model for bearing faults. Firstly, this paper devises a distinctive WPT time–frequency feature map (WPT-TFFM) construction method using WPT for time–frequency analysis on nonlinear and non-stationary vibration signals. Then, a modified multi-group parallel ResNet network is structured to extract the depth features of WPT-TFFM for the characteristics of small size and feature dispersion. Then, MK-MMD is further applied to evaluate the distribution difference between the depth features of the source and target domain data. Combining with the classification loss of the sample set with the source domain, the depth features extraction network is optimized to achieve better cross-domain invariance and fault state differentiation capability of the depth features. To evaluate the proposed method, this work conducts comparative experiments on two test rigs under different working loads and speeds. The results reveal that the proposed method offers excellent fault diagnosis and noise prevention capability for working condition transfer tasks." @default.
- W4284889614 created "2022-07-09" @default.
- W4284889614 creator A5021964163 @default.
- W4284889614 creator A5023155191 @default.
- W4284889614 creator A5028170901 @default.
- W4284889614 creator A5029171785 @default.
- W4284889614 creator A5058429956 @default.
- W4284889614 creator A5074177514 @default.
- W4284889614 creator A5082708885 @default.
- W4284889614 date "2022-09-01" @default.
- W4284889614 modified "2023-10-16" @default.
- W4284889614 title "A wavelet packet transform-based deep feature transfer learning method for bearing fault diagnosis under different working conditions" @default.
- W4284889614 cites W1963551311 @default.
- W4284889614 cites W2194775991 @default.
- W4284889614 cites W2287972354 @default.
- W4284889614 cites W2323403147 @default.
- W4284889614 cites W2468457481 @default.
- W4284889614 cites W2562762876 @default.
- W4284889614 cites W2609688418 @default.
- W4284889614 cites W2735326783 @default.
- W4284889614 cites W2744790985 @default.
- W4284889614 cites W2765284480 @default.
- W4284889614 cites W2767234670 @default.
- W4284889614 cites W2803884688 @default.
- W4284889614 cites W2807272465 @default.
- W4284889614 cites W2810292802 @default.
- W4284889614 cites W2898375427 @default.
- W4284889614 cites W2901639182 @default.
- W4284889614 cites W2907541186 @default.
- W4284889614 cites W2914298094 @default.
- W4284889614 cites W2932115805 @default.
- W4284889614 cites W2945927364 @default.
- W4284889614 cites W2962769582 @default.
- W4284889614 cites W2969372261 @default.
- W4284889614 cites W2998535639 @default.
- W4284889614 cites W3010878087 @default.
- W4284889614 cites W3017630871 @default.
- W4284889614 cites W3022265541 @default.
- W4284889614 cites W3025888249 @default.
- W4284889614 cites W3034110479 @default.
- W4284889614 cites W3083358932 @default.
- W4284889614 cites W3111360185 @default.
- W4284889614 cites W3146740292 @default.
- W4284889614 cites W3158768656 @default.
- W4284889614 cites W3161853558 @default.
- W4284889614 cites W3171211495 @default.
- W4284889614 cites W3195959685 @default.
- W4284889614 cites W3199394937 @default.
- W4284889614 doi "https://doi.org/10.1016/j.measurement.2022.111597" @default.
- W4284889614 hasPublicationYear "2022" @default.
- W4284889614 type Work @default.
- W4284889614 citedByCount "15" @default.
- W4284889614 countsByYear W42848896142022 @default.
- W4284889614 countsByYear W42848896142023 @default.
- W4284889614 crossrefType "journal-article" @default.
- W4284889614 hasAuthorship W4284889614A5021964163 @default.
- W4284889614 hasAuthorship W4284889614A5023155191 @default.
- W4284889614 hasAuthorship W4284889614A5028170901 @default.
- W4284889614 hasAuthorship W4284889614A5029171785 @default.
- W4284889614 hasAuthorship W4284889614A5058429956 @default.
- W4284889614 hasAuthorship W4284889614A5074177514 @default.
- W4284889614 hasAuthorship W4284889614A5082708885 @default.
- W4284889614 hasBestOaLocation W42848896142 @default.
- W4284889614 hasConcept C103824480 @default.
- W4284889614 hasConcept C106131492 @default.
- W4284889614 hasConcept C11413529 @default.
- W4284889614 hasConcept C115961682 @default.
- W4284889614 hasConcept C127313418 @default.
- W4284889614 hasConcept C127413603 @default.
- W4284889614 hasConcept C138885662 @default.
- W4284889614 hasConcept C142433447 @default.
- W4284889614 hasConcept C150899416 @default.
- W4284889614 hasConcept C153180895 @default.
- W4284889614 hasConcept C154945302 @default.
- W4284889614 hasConcept C155512373 @default.
- W4284889614 hasConcept C155777637 @default.
- W4284889614 hasConcept C165205528 @default.
- W4284889614 hasConcept C175551986 @default.
- W4284889614 hasConcept C19118579 @default.
- W4284889614 hasConcept C196216189 @default.
- W4284889614 hasConcept C2776401178 @default.
- W4284889614 hasConcept C31972630 @default.
- W4284889614 hasConcept C41008148 @default.
- W4284889614 hasConcept C41895202 @default.
- W4284889614 hasConcept C47432892 @default.
- W4284889614 hasConcept C52622490 @default.
- W4284889614 hasConcept C99498987 @default.
- W4284889614 hasConceptScore W4284889614C103824480 @default.
- W4284889614 hasConceptScore W4284889614C106131492 @default.
- W4284889614 hasConceptScore W4284889614C11413529 @default.
- W4284889614 hasConceptScore W4284889614C115961682 @default.
- W4284889614 hasConceptScore W4284889614C127313418 @default.
- W4284889614 hasConceptScore W4284889614C127413603 @default.
- W4284889614 hasConceptScore W4284889614C138885662 @default.
- W4284889614 hasConceptScore W4284889614C142433447 @default.
- W4284889614 hasConceptScore W4284889614C150899416 @default.
- W4284889614 hasConceptScore W4284889614C153180895 @default.
- W4284889614 hasConceptScore W4284889614C154945302 @default.