Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284893586> ?p ?o ?g. }
- W4284893586 abstract "ABSTRACT Tumour immunity is key for the prognosis and treatment of colon adenocarcinoma, but its characterisation remains cumbersome and expensive, requiring sequencing or other complex assays. Detecting tumour-infiltrating lymphocytes in haematoxylin and eosin (H&E) slides of cancer tissue would provide a cost-effective alternative to support clinicians in treatment decisions, but inter- and intra-observer variability can arise even amongst experienced pathologists. Furthermore, the compounded effect of other cells in the tumour microenvironment is challenging to quantify but could yield useful additional biomarkers. We combined RNA sequencing, digital pathology and deep learning through the InceptionV3 architecture to develop a fully automated computer vision model that detects prognostic tumour immunity levels in H&E slides of colon adenocarcinoma with an area under the curve (AUC) of 82%. Amongst tumour infiltrating T cell subsets, we demonstrate that CD8+ effector memory T cell patterns are most recognisable algorithmically with an average AUC of 83%. We subsequently applied nuclear segmentation and classification via HoVer-Net to derive complex cell-cell interaction graphs, which we queried efficiently through a bespoke Neo4J graph database. This uncovered stromal barriers and lymphocyte triplets that could act as structural hallmarks of low immunity tumours with poor prognosis. Our integrated deep learning and graph-based workflow provides evidence for the feasibility of automated detection of complex immune cytotoxicity patterns within H&E-stained colon cancer slides, which could inform new cellular biomarkers and support treatment management of this disease in the future." @default.
- W4284893586 created "2022-07-09" @default.
- W4284893586 creator A5013752060 @default.
- W4284893586 creator A5033665900 @default.
- W4284893586 creator A5046862923 @default.
- W4284893586 creator A5050056070 @default.
- W4284893586 creator A5064141027 @default.
- W4284893586 date "2022-07-07" @default.
- W4284893586 modified "2023-09-24" @default.
- W4284893586 title "A deep learning and graph-based approach to characterise the immunological landscape and spatial architecture of colon cancer tissue" @default.
- W4284893586 cites W1859257957 @default.
- W4284893586 cites W1934094702 @default.
- W4284893586 cites W1970437230 @default.
- W4284893586 cites W1985987855 @default.
- W4284893586 cites W2042437331 @default.
- W4284893586 cites W2047060984 @default.
- W4284893586 cites W2079641633 @default.
- W4284893586 cites W2094390470 @default.
- W4284893586 cites W2108598243 @default.
- W4284893586 cites W2123927486 @default.
- W4284893586 cites W2129728624 @default.
- W4284893586 cites W2132162500 @default.
- W4284893586 cites W2142300779 @default.
- W4284893586 cites W2198211676 @default.
- W4284893586 cites W2264544376 @default.
- W4284893586 cites W2574604975 @default.
- W4284893586 cites W2626585215 @default.
- W4284893586 cites W2744335798 @default.
- W4284893586 cites W2793123503 @default.
- W4284893586 cites W2795622837 @default.
- W4284893586 cites W2796409016 @default.
- W4284893586 cites W2800392236 @default.
- W4284893586 cites W2892047621 @default.
- W4284893586 cites W2907564726 @default.
- W4284893586 cites W2914568698 @default.
- W4284893586 cites W2948930564 @default.
- W4284893586 cites W2967681225 @default.
- W4284893586 cites W2974825848 @default.
- W4284893586 cites W2981545603 @default.
- W4284893586 cites W2989624957 @default.
- W4284893586 cites W2990174514 @default.
- W4284893586 cites W2998141119 @default.
- W4284893586 cites W3008826523 @default.
- W4284893586 cites W3014913757 @default.
- W4284893586 cites W3025630280 @default.
- W4284893586 cites W3026205722 @default.
- W4284893586 cites W3027774968 @default.
- W4284893586 cites W3031256816 @default.
- W4284893586 cites W3036122989 @default.
- W4284893586 cites W3037919768 @default.
- W4284893586 cites W3046305306 @default.
- W4284893586 cites W3083966623 @default.
- W4284893586 cites W3094646398 @default.
- W4284893586 cites W3110087174 @default.
- W4284893586 cites W3131526166 @default.
- W4284893586 cites W3154997013 @default.
- W4284893586 cites W3199216314 @default.
- W4284893586 cites W3205605830 @default.
- W4284893586 cites W4210583065 @default.
- W4284893586 cites W4281878278 @default.
- W4284893586 cites W649715718 @default.
- W4284893586 doi "https://doi.org/10.1101/2022.07.06.498984" @default.
- W4284893586 hasPublicationYear "2022" @default.
- W4284893586 type Work @default.
- W4284893586 citedByCount "1" @default.
- W4284893586 countsByYear W42848935862023 @default.
- W4284893586 crossrefType "posted-content" @default.
- W4284893586 hasAuthorship W4284893586A5013752060 @default.
- W4284893586 hasAuthorship W4284893586A5033665900 @default.
- W4284893586 hasAuthorship W4284893586A5046862923 @default.
- W4284893586 hasAuthorship W4284893586A5050056070 @default.
- W4284893586 hasAuthorship W4284893586A5064141027 @default.
- W4284893586 hasBestOaLocation W42848935861 @default.
- W4284893586 hasConcept C142724271 @default.
- W4284893586 hasConcept C154945302 @default.
- W4284893586 hasConcept C16930146 @default.
- W4284893586 hasConcept C177212765 @default.
- W4284893586 hasConcept C2777522853 @default.
- W4284893586 hasConcept C41008148 @default.
- W4284893586 hasConcept C502942594 @default.
- W4284893586 hasConcept C71924100 @default.
- W4284893586 hasConcept C77088390 @default.
- W4284893586 hasConceptScore W4284893586C142724271 @default.
- W4284893586 hasConceptScore W4284893586C154945302 @default.
- W4284893586 hasConceptScore W4284893586C16930146 @default.
- W4284893586 hasConceptScore W4284893586C177212765 @default.
- W4284893586 hasConceptScore W4284893586C2777522853 @default.
- W4284893586 hasConceptScore W4284893586C41008148 @default.
- W4284893586 hasConceptScore W4284893586C502942594 @default.
- W4284893586 hasConceptScore W4284893586C71924100 @default.
- W4284893586 hasConceptScore W4284893586C77088390 @default.
- W4284893586 hasLocation W42848935861 @default.
- W4284893586 hasOpenAccess W4284893586 @default.
- W4284893586 hasPrimaryLocation W42848935861 @default.
- W4284893586 hasRelatedWork W1995531130 @default.
- W4284893586 hasRelatedWork W2081035100 @default.
- W4284893586 hasRelatedWork W2538956693 @default.
- W4284893586 hasRelatedWork W2546967626 @default.
- W4284893586 hasRelatedWork W2553136576 @default.
- W4284893586 hasRelatedWork W2554159640 @default.