Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284961752> ?p ?o ?g. }
- W4284961752 endingPage "016555152211066" @default.
- W4284961752 startingPage "016555152211066" @default.
- W4284961752 abstract "Similarity metrics are critical to identifying the relationships between patents. While many bibliometric methods such as co-citation and co-classification fail to use the vast majority of technical information existing in the text, most text mining methods focus on keywords in only one text field of the patent document. This article aims to leverage various text fields to measure pairwise patent similarity according to their technological bases. A novel approach called semantic embedding with attention for patent similarity (SEA-PS) is proposed. First, the method identifies technological bases and models the semantic relatedness. To achieve this, we put forward an additional patent stop-word list to help extract technical terms with an n-gram-based statistical method. The technical terms are then mapped into a vector space using word embedding. Second, we propose a graph-based method to allocate weights to distinguish the technical focus, considering the linkages between technologies. Finally, we assess the feasibility of the text fields, and integrate their semantics at the patent-level with an attention layer to conduct similarity metrics. The validations are from two perspectives: content validity (coverage of technical information, the validity of semantic representations and effectiveness of text field combinations), and external validity against existing methods via an expert panel. The results demonstrate the superiority of SEA-PS to existing methods, and suggest that ‘abstracts’, ‘claims’ and ‘technical descriptions’ are more effective than ‘titles’. SEA-PS is a fundamental tool for patent retrieval and classification. It also has a broad range of practical applications in innovation and strategy studies, including identifying technological frontiers and studying knowledge spillovers." @default.
- W4284961752 created "2022-07-10" @default.
- W4284961752 creator A5040466966 @default.
- W4284961752 creator A5087402468 @default.
- W4284961752 date "2022-07-08" @default.
- W4284961752 modified "2023-09-28" @default.
- W4284961752 title "SEA-PS: Semantic embedding with attention to measuring patent similarity by leveraging various text fields" @default.
- W4284961752 cites W1968287986 @default.
- W4284961752 cites W1971579776 @default.
- W4284961752 cites W1979285209 @default.
- W4284961752 cites W1984589255 @default.
- W4284961752 cites W1993068194 @default.
- W4284961752 cites W2036120890 @default.
- W4284961752 cites W2040425686 @default.
- W4284961752 cites W2054928183 @default.
- W4284961752 cites W2059773269 @default.
- W4284961752 cites W2082036180 @default.
- W4284961752 cites W2084319893 @default.
- W4284961752 cites W2085987272 @default.
- W4284961752 cites W2530176652 @default.
- W4284961752 cites W2555197705 @default.
- W4284961752 cites W2585136728 @default.
- W4284961752 cites W2746935090 @default.
- W4284961752 cites W2748006193 @default.
- W4284961752 cites W2766802815 @default.
- W4284961752 cites W2783785145 @default.
- W4284961752 cites W2801708802 @default.
- W4284961752 cites W2811393141 @default.
- W4284961752 cites W2888039742 @default.
- W4284961752 cites W2889961245 @default.
- W4284961752 cites W2894120170 @default.
- W4284961752 cites W2909499786 @default.
- W4284961752 cites W2911462778 @default.
- W4284961752 cites W2925605018 @default.
- W4284961752 cites W2942535157 @default.
- W4284961752 cites W2946185384 @default.
- W4284961752 cites W2947817682 @default.
- W4284961752 cites W2953641512 @default.
- W4284961752 cites W2962739339 @default.
- W4284961752 cites W2962901607 @default.
- W4284961752 cites W2962992342 @default.
- W4284961752 cites W2968219216 @default.
- W4284961752 cites W2968821758 @default.
- W4284961752 cites W2969961114 @default.
- W4284961752 cites W2970771982 @default.
- W4284961752 cites W2972445441 @default.
- W4284961752 cites W2979023429 @default.
- W4284961752 cites W2989802345 @default.
- W4284961752 cites W2996222654 @default.
- W4284961752 cites W3001729371 @default.
- W4284961752 cites W3002882006 @default.
- W4284961752 cites W3034156543 @default.
- W4284961752 cites W3104292416 @default.
- W4284961752 cites W3122933348 @default.
- W4284961752 doi "https://doi.org/10.1177/01655515221106651" @default.
- W4284961752 hasPublicationYear "2022" @default.
- W4284961752 type Work @default.
- W4284961752 citedByCount "0" @default.
- W4284961752 crossrefType "journal-article" @default.
- W4284961752 hasAuthorship W4284961752A5040466966 @default.
- W4284961752 hasAuthorship W4284961752A5087402468 @default.
- W4284961752 hasConcept C103278499 @default.
- W4284961752 hasConcept C115961682 @default.
- W4284961752 hasConcept C130318100 @default.
- W4284961752 hasConcept C142362112 @default.
- W4284961752 hasConcept C153083717 @default.
- W4284961752 hasConcept C153349607 @default.
- W4284961752 hasConcept C154945302 @default.
- W4284961752 hasConcept C184898388 @default.
- W4284961752 hasConcept C202444582 @default.
- W4284961752 hasConcept C23123220 @default.
- W4284961752 hasConcept C2522767166 @default.
- W4284961752 hasConcept C2776035091 @default.
- W4284961752 hasConcept C2777462759 @default.
- W4284961752 hasConcept C33923547 @default.
- W4284961752 hasConcept C41008148 @default.
- W4284961752 hasConcept C41608201 @default.
- W4284961752 hasConcept C9652623 @default.
- W4284961752 hasConceptScore W4284961752C103278499 @default.
- W4284961752 hasConceptScore W4284961752C115961682 @default.
- W4284961752 hasConceptScore W4284961752C130318100 @default.
- W4284961752 hasConceptScore W4284961752C142362112 @default.
- W4284961752 hasConceptScore W4284961752C153083717 @default.
- W4284961752 hasConceptScore W4284961752C153349607 @default.
- W4284961752 hasConceptScore W4284961752C154945302 @default.
- W4284961752 hasConceptScore W4284961752C184898388 @default.
- W4284961752 hasConceptScore W4284961752C202444582 @default.
- W4284961752 hasConceptScore W4284961752C23123220 @default.
- W4284961752 hasConceptScore W4284961752C2522767166 @default.
- W4284961752 hasConceptScore W4284961752C2776035091 @default.
- W4284961752 hasConceptScore W4284961752C2777462759 @default.
- W4284961752 hasConceptScore W4284961752C33923547 @default.
- W4284961752 hasConceptScore W4284961752C41008148 @default.
- W4284961752 hasConceptScore W4284961752C41608201 @default.
- W4284961752 hasConceptScore W4284961752C9652623 @default.
- W4284961752 hasFunder F4320321001 @default.
- W4284961752 hasLocation W42849617521 @default.
- W4284961752 hasOpenAccess W4284961752 @default.