Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284963313> ?p ?o ?g. }
- W4284963313 endingPage "e39888" @default.
- W4284963313 startingPage "e39888" @default.
- W4284963313 abstract "Background Understanding how individuals think about a topic, known as the mental model, can significantly improve communication, especially in the medical domain where emotions and implications are high. Neurodevelopmental disorders (NDDs) represent a group of diagnoses, affecting up to 18% of the global population, involving differences in the development of cognitive or social functions. In this study, we focus on 2 NDDs, attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), which involve multiple symptoms and interventions requiring interactions between 2 important stakeholders: parents and health professionals. There is a gap in our understanding of differences between mental models for each stakeholder, making communication between stakeholders more difficult than it could be. Objective We aim to build knowledge graphs (KGs) from web-based information relevant to each stakeholder as proxies of mental models. These KGs will accelerate the identification of shared and divergent concerns between stakeholders. The developed KGs can help improve knowledge mobilization, communication, and care for individuals with ADHD and ASD. Methods We created 2 data sets by collecting the posts from web-based forums and PubMed abstracts related to ADHD and ASD. We utilized the Unified Medical Language System (UMLS) to detect biomedical concepts and applied Positive Pointwise Mutual Information followed by truncated Singular Value Decomposition to obtain corpus-based concept embeddings for each data set. Each data set is represented as a KG using a property graph model. Semantic relatedness between concepts is calculated to rank the relation strength of concepts and stored in the KG as relation weights. UMLS disorder-relevant semantic types are used to provide additional categorical information about each concept’s domain. Results The developed KGs contain concepts from both data sets, with node sizes representing the co-occurrence frequency of concepts and edge sizes representing relevance between concepts. ADHD- and ASD-related concepts from different semantic types shows diverse areas of concerns and complex needs of the conditions. KG identifies converging and diverging concepts between health professionals literature (PubMed) and parental concerns (web-based forums), which may correspond to the differences between mental models for each stakeholder. Conclusions We show for the first time that generating KGs from web-based data can capture the complex needs of families dealing with ADHD or ASD. Moreover, we showed points of convergence between families and health professionals’ KGs. Natural language processing–based KG provides access to a large sample size, which is often a limiting factor for traditional in-person mental model mapping. Our work offers a high throughput access to mental model maps, which could be used for further in-person validation, knowledge mobilization projects, and basis for communication about potential blind spots from stakeholders in interactions about NDDs. Future research will be needed to identify how concepts could interact together differently for each stakeholder." @default.
- W4284963313 created "2022-07-10" @default.
- W4284963313 creator A5005871512 @default.
- W4284963313 creator A5018032095 @default.
- W4284963313 creator A5024453737 @default.
- W4284963313 creator A5066954835 @default.
- W4284963313 creator A5083005870 @default.
- W4284963313 creator A5085322619 @default.
- W4284963313 date "2022-08-05" @default.
- W4284963313 modified "2023-10-14" @default.
- W4284963313 title "Deciphering the Diversity of Mental Models in Neurodevelopmental Disorders: Knowledge Graph Representation of Public Data Using Natural Language Processing" @default.
- W4284963313 cites W1997172059 @default.
- W4284963313 cites W1999821457 @default.
- W4284963313 cites W2014743195 @default.
- W4284963313 cites W2019416585 @default.
- W4284963313 cites W2043537094 @default.
- W4284963313 cites W2065091118 @default.
- W4284963313 cites W2078645472 @default.
- W4284963313 cites W2078888133 @default.
- W4284963313 cites W2087944454 @default.
- W4284963313 cites W2100922849 @default.
- W4284963313 cites W2127360071 @default.
- W4284963313 cites W2133262964 @default.
- W4284963313 cites W2151537205 @default.
- W4284963313 cites W2155427676 @default.
- W4284963313 cites W2159583324 @default.
- W4284963313 cites W2159611455 @default.
- W4284963313 cites W2170219130 @default.
- W4284963313 cites W2170431567 @default.
- W4284963313 cites W2188948834 @default.
- W4284963313 cites W2218658328 @default.
- W4284963313 cites W2260770206 @default.
- W4284963313 cites W2283004568 @default.
- W4284963313 cites W2554944218 @default.
- W4284963313 cites W2605185899 @default.
- W4284963313 cites W2740216362 @default.
- W4284963313 cites W2740804691 @default.
- W4284963313 cites W2744007523 @default.
- W4284963313 cites W2770381232 @default.
- W4284963313 cites W2899611588 @default.
- W4284963313 cites W2900809578 @default.
- W4284963313 cites W2911482599 @default.
- W4284963313 cites W2914942011 @default.
- W4284963313 cites W2945901909 @default.
- W4284963313 cites W2963292194 @default.
- W4284963313 cites W2963471474 @default.
- W4284963313 cites W2963780471 @default.
- W4284963313 cites W2979827051 @default.
- W4284963313 cites W3003265726 @default.
- W4284963313 cites W3015051734 @default.
- W4284963313 cites W3019449109 @default.
- W4284963313 cites W3023295472 @default.
- W4284963313 cites W3092008332 @default.
- W4284963313 cites W3106224367 @default.
- W4284963313 cites W3111301126 @default.
- W4284963313 cites W3112367250 @default.
- W4284963313 cites W3114820288 @default.
- W4284963313 cites W3115937632 @default.
- W4284963313 cites W3178522720 @default.
- W4284963313 cites W3179072262 @default.
- W4284963313 cites W3197130475 @default.
- W4284963313 cites W3200181563 @default.
- W4284963313 cites W4210293141 @default.
- W4284963313 cites W4210632727 @default.
- W4284963313 cites W4214895013 @default.
- W4284963313 cites W4230172260 @default.
- W4284963313 cites W73795280 @default.
- W4284963313 doi "https://doi.org/10.2196/39888" @default.
- W4284963313 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35930346" @default.
- W4284963313 hasPublicationYear "2022" @default.
- W4284963313 type Work @default.
- W4284963313 citedByCount "1" @default.
- W4284963313 countsByYear W42849633132023 @default.
- W4284963313 crossrefType "journal-article" @default.
- W4284963313 hasAuthorship W4284963313A5005871512 @default.
- W4284963313 hasAuthorship W4284963313A5018032095 @default.
- W4284963313 hasAuthorship W4284963313A5024453737 @default.
- W4284963313 hasAuthorship W4284963313A5066954835 @default.
- W4284963313 hasAuthorship W4284963313A5083005870 @default.
- W4284963313 hasAuthorship W4284963313A5085322619 @default.
- W4284963313 hasBestOaLocation W42849633131 @default.
- W4284963313 hasConcept C118552586 @default.
- W4284963313 hasConcept C134362201 @default.
- W4284963313 hasConcept C154945302 @default.
- W4284963313 hasConcept C15744967 @default.
- W4284963313 hasConcept C180747234 @default.
- W4284963313 hasConcept C204321447 @default.
- W4284963313 hasConcept C205778803 @default.
- W4284963313 hasConcept C2522767166 @default.
- W4284963313 hasConcept C2778538070 @default.
- W4284963313 hasConcept C41008148 @default.
- W4284963313 hasConcept C69505689 @default.
- W4284963313 hasConceptScore W4284963313C118552586 @default.
- W4284963313 hasConceptScore W4284963313C134362201 @default.
- W4284963313 hasConceptScore W4284963313C154945302 @default.
- W4284963313 hasConceptScore W4284963313C15744967 @default.
- W4284963313 hasConceptScore W4284963313C180747234 @default.
- W4284963313 hasConceptScore W4284963313C204321447 @default.