Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284964718> ?p ?o ?g. }
- W4284964718 endingPage "1037" @default.
- W4284964718 startingPage "1037" @default.
- W4284964718 abstract "Heavy metal pollution in soil is threatening the ecological environment and human health. However, field measurement of heavy metal content in soil entails significant costs. Therefore, this study explores the estimation method of soil heavy metals based on remote sensing images and machine learning. To accurately estimate the heavy metal content, we propose a hybrid artificial intelligence model integrating least absolute shrinkage and selection operator (LASSO), genetic algorithm (GA) and error back propagation neural network (BPNN), namely the LASSO-GA-BPNN model. Meanwhile, this study compares the accuracy of the LASSO-GA-BPNN model, SVR (Support Vector Regression), RF (Random Forest) and spatial interpolation methods with Huanghua city as an example. Furthermore, the study uses the LASSO-GA-BPNN model to estimate the content of eight heavy metals (including Ni, Pb, Cr, Hg, Cd, As, Cu, and Zn) in Huanghua and visualize the results in high resolution. In addition, we calculate the Nemerow index based on the estimation results. The results denote that, the simultaneous optimization of BPNN by LASSO and GA can greatly improve the estimation accuracy and generalization ability. The LASSO-GA-BPNN model is a more accurate model for the estimate heavy metal content in soil compared to SVR, RF and spatial interpolation. Moreover, the comprehensive pollution level in Huanghua is mainly low pollution. The overall spatial distribution law of each heavy metal content is very similar, and the local spatial distribution of each heavy metal is different. The results are of great significance for soil pollution estimation." @default.
- W4284964718 created "2022-07-10" @default.
- W4284964718 creator A5006399288 @default.
- W4284964718 creator A5025598272 @default.
- W4284964718 creator A5037437665 @default.
- W4284964718 creator A5041187506 @default.
- W4284964718 creator A5045543880 @default.
- W4284964718 creator A5067543457 @default.
- W4284964718 creator A5068615078 @default.
- W4284964718 creator A5076626946 @default.
- W4284964718 date "2022-07-08" @default.
- W4284964718 modified "2023-10-15" @default.
- W4284964718 title "Estimation of Heavy Metal Content in Soil Based on Machine Learning Models" @default.
- W4284964718 cites W1824685703 @default.
- W4284964718 cites W1964357740 @default.
- W4284964718 cites W2038288139 @default.
- W4284964718 cites W2054325787 @default.
- W4284964718 cites W2092981979 @default.
- W4284964718 cites W2093432449 @default.
- W4284964718 cites W2119862467 @default.
- W4284964718 cites W2126105956 @default.
- W4284964718 cites W2133642590 @default.
- W4284964718 cites W2137091531 @default.
- W4284964718 cites W2140095548 @default.
- W4284964718 cites W2154642048 @default.
- W4284964718 cites W2290130166 @default.
- W4284964718 cites W2342352000 @default.
- W4284964718 cites W2565485525 @default.
- W4284964718 cites W2599078327 @default.
- W4284964718 cites W2740570758 @default.
- W4284964718 cites W2792215844 @default.
- W4284964718 cites W2794159684 @default.
- W4284964718 cites W2808187500 @default.
- W4284964718 cites W2897043150 @default.
- W4284964718 cites W2905388449 @default.
- W4284964718 cites W2906231571 @default.
- W4284964718 cites W2911907855 @default.
- W4284964718 cites W2911964244 @default.
- W4284964718 cites W2912227061 @default.
- W4284964718 cites W2912379622 @default.
- W4284964718 cites W2945251489 @default.
- W4284964718 cites W2946066539 @default.
- W4284964718 cites W2946494228 @default.
- W4284964718 cites W2959803470 @default.
- W4284964718 cites W2978789560 @default.
- W4284964718 cites W2996969240 @default.
- W4284964718 cites W3027440088 @default.
- W4284964718 cites W3042432682 @default.
- W4284964718 cites W3044125751 @default.
- W4284964718 cites W3085485679 @default.
- W4284964718 cites W3107742916 @default.
- W4284964718 cites W3130480750 @default.
- W4284964718 cites W3135500119 @default.
- W4284964718 cites W3157924334 @default.
- W4284964718 cites W3174182089 @default.
- W4284964718 cites W3175104515 @default.
- W4284964718 cites W3181591427 @default.
- W4284964718 cites W3184146923 @default.
- W4284964718 cites W3184904817 @default.
- W4284964718 cites W3196431754 @default.
- W4284964718 cites W3201683286 @default.
- W4284964718 cites W3203710569 @default.
- W4284964718 cites W3209498980 @default.
- W4284964718 cites W3210086859 @default.
- W4284964718 cites W3210581496 @default.
- W4284964718 cites W3212022957 @default.
- W4284964718 cites W3215762138 @default.
- W4284964718 cites W4206097136 @default.
- W4284964718 cites W4214605360 @default.
- W4284964718 cites W4223473625 @default.
- W4284964718 cites W4226016513 @default.
- W4284964718 cites W4229072288 @default.
- W4284964718 cites W4280579016 @default.
- W4284964718 cites W4281933899 @default.
- W4284964718 doi "https://doi.org/10.3390/land11071037" @default.
- W4284964718 hasPublicationYear "2022" @default.
- W4284964718 type Work @default.
- W4284964718 citedByCount "9" @default.
- W4284964718 countsByYear W42849647182023 @default.
- W4284964718 crossrefType "journal-article" @default.
- W4284964718 hasAuthorship W4284964718A5006399288 @default.
- W4284964718 hasAuthorship W4284964718A5025598272 @default.
- W4284964718 hasAuthorship W4284964718A5037437665 @default.
- W4284964718 hasAuthorship W4284964718A5041187506 @default.
- W4284964718 hasAuthorship W4284964718A5045543880 @default.
- W4284964718 hasAuthorship W4284964718A5067543457 @default.
- W4284964718 hasAuthorship W4284964718A5068615078 @default.
- W4284964718 hasAuthorship W4284964718A5076626946 @default.
- W4284964718 hasBestOaLocation W42849647181 @default.
- W4284964718 hasConcept C104114177 @default.
- W4284964718 hasConcept C105795698 @default.
- W4284964718 hasConcept C119857082 @default.
- W4284964718 hasConcept C12267149 @default.
- W4284964718 hasConcept C136764020 @default.
- W4284964718 hasConcept C137800194 @default.
- W4284964718 hasConcept C154945302 @default.
- W4284964718 hasConcept C159390177 @default.
- W4284964718 hasConcept C169258074 @default.