Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284966501> ?p ?o ?g. }
- W4284966501 endingPage "108649" @default.
- W4284966501 startingPage "108649" @default.
- W4284966501 abstract "Mechanical characterization of fractures, i.e., identifying their characteristic parameters such as energy release rate, is crucial to assess the safety and stability of structural members. This is generally achieved using a combination of finite element analysis and optimization. Machine learning models are increasingly used to characterize engineering problems. While such models have shown impressive performance on smooth data, their performance diminishes significantly on data with discontinuities and sharp gradients. For fractures, this issue is more severe due to the singular solutions in the vicinity of the fracture tips. To resolve this difficulty, leveraging classical fracture mechanics, we construct custom functions, using neural networks, containing fundamental solutions of fracture mechanics. Through a series of examples, we demonstrate the proposed framework not only captures the singular solution and characteristic parameters accurately on both noise-free and noisy data, but also is highly efficient due to its simplicity and small number of parameters." @default.
- W4284966501 created "2022-07-10" @default.
- W4284966501 creator A5047574155 @default.
- W4284966501 creator A5051753351 @default.
- W4284966501 creator A5056807413 @default.
- W4284966501 creator A5065297653 @default.
- W4284966501 creator A5083251922 @default.
- W4284966501 date "2022-08-01" @default.
- W4284966501 modified "2023-10-16" @default.
- W4284966501 title "Fracture characterization from noisy displacement data using artificial neural networks" @default.
- W4284966501 cites W1510184633 @default.
- W4284966501 cites W1963997173 @default.
- W4284966501 cites W1988115241 @default.
- W4284966501 cites W1990834492 @default.
- W4284966501 cites W1995251196 @default.
- W4284966501 cites W2003000852 @default.
- W4284966501 cites W2027749608 @default.
- W4284966501 cites W2047655099 @default.
- W4284966501 cites W2063461366 @default.
- W4284966501 cites W2084464066 @default.
- W4284966501 cites W2091243708 @default.
- W4284966501 cites W2094903790 @default.
- W4284966501 cites W2101121254 @default.
- W4284966501 cites W2114207581 @default.
- W4284966501 cites W2142596047 @default.
- W4284966501 cites W2529943190 @default.
- W4284966501 cites W2766876420 @default.
- W4284966501 cites W2775816437 @default.
- W4284966501 cites W2778051509 @default.
- W4284966501 cites W2900438754 @default.
- W4284966501 cites W2964269625 @default.
- W4284966501 cites W2981246174 @default.
- W4284966501 cites W3003462774 @default.
- W4284966501 cites W3025645353 @default.
- W4284966501 cites W3031879091 @default.
- W4284966501 cites W3091022083 @default.
- W4284966501 cites W3099859964 @default.
- W4284966501 cites W3117130769 @default.
- W4284966501 cites W3135054202 @default.
- W4284966501 cites W3137392741 @default.
- W4284966501 cites W3193726109 @default.
- W4284966501 cites W3198399594 @default.
- W4284966501 doi "https://doi.org/10.1016/j.engfracmech.2022.108649" @default.
- W4284966501 hasPublicationYear "2022" @default.
- W4284966501 type Work @default.
- W4284966501 citedByCount "6" @default.
- W4284966501 countsByYear W42849665012023 @default.
- W4284966501 crossrefType "journal-article" @default.
- W4284966501 hasAuthorship W4284966501A5047574155 @default.
- W4284966501 hasAuthorship W4284966501A5051753351 @default.
- W4284966501 hasAuthorship W4284966501A5056807413 @default.
- W4284966501 hasAuthorship W4284966501A5065297653 @default.
- W4284966501 hasAuthorship W4284966501A5083251922 @default.
- W4284966501 hasConcept C107551265 @default.
- W4284966501 hasConcept C112972136 @default.
- W4284966501 hasConcept C11413529 @default.
- W4284966501 hasConcept C115961682 @default.
- W4284966501 hasConcept C119857082 @default.
- W4284966501 hasConcept C127413603 @default.
- W4284966501 hasConcept C134306372 @default.
- W4284966501 hasConcept C135628077 @default.
- W4284966501 hasConcept C154945302 @default.
- W4284966501 hasConcept C15627037 @default.
- W4284966501 hasConcept C15744967 @default.
- W4284966501 hasConcept C171250308 @default.
- W4284966501 hasConcept C187320778 @default.
- W4284966501 hasConcept C192562407 @default.
- W4284966501 hasConcept C2780841128 @default.
- W4284966501 hasConcept C28826006 @default.
- W4284966501 hasConcept C33923547 @default.
- W4284966501 hasConcept C41008148 @default.
- W4284966501 hasConcept C43369102 @default.
- W4284966501 hasConcept C50644808 @default.
- W4284966501 hasConcept C542102704 @default.
- W4284966501 hasConcept C59085676 @default.
- W4284966501 hasConcept C66938386 @default.
- W4284966501 hasConcept C99498987 @default.
- W4284966501 hasConceptScore W4284966501C107551265 @default.
- W4284966501 hasConceptScore W4284966501C112972136 @default.
- W4284966501 hasConceptScore W4284966501C11413529 @default.
- W4284966501 hasConceptScore W4284966501C115961682 @default.
- W4284966501 hasConceptScore W4284966501C119857082 @default.
- W4284966501 hasConceptScore W4284966501C127413603 @default.
- W4284966501 hasConceptScore W4284966501C134306372 @default.
- W4284966501 hasConceptScore W4284966501C135628077 @default.
- W4284966501 hasConceptScore W4284966501C154945302 @default.
- W4284966501 hasConceptScore W4284966501C15627037 @default.
- W4284966501 hasConceptScore W4284966501C15744967 @default.
- W4284966501 hasConceptScore W4284966501C171250308 @default.
- W4284966501 hasConceptScore W4284966501C187320778 @default.
- W4284966501 hasConceptScore W4284966501C192562407 @default.
- W4284966501 hasConceptScore W4284966501C2780841128 @default.
- W4284966501 hasConceptScore W4284966501C28826006 @default.
- W4284966501 hasConceptScore W4284966501C33923547 @default.
- W4284966501 hasConceptScore W4284966501C41008148 @default.
- W4284966501 hasConceptScore W4284966501C43369102 @default.
- W4284966501 hasConceptScore W4284966501C50644808 @default.
- W4284966501 hasConceptScore W4284966501C542102704 @default.