Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284967345> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W4284967345 endingPage "12" @default.
- W4284967345 startingPage "4" @default.
- W4284967345 abstract "A tensor network is a type of decomposition used to express and approximate large arrays of data. A given data-set, quantum state or higher dimensional multi-linear map is factored and approximated by a composition of smaller multi-linear maps. This is reminiscent to how a Boolean function might be decomposed into a gate array: this represents a special case of tensor decomposition, in which the tensor entries are replaced by 0, 1 and the factorisation becomes exact. The collection of associated techniques are called, tensor network methods: the subject developed independently in several distinct fields of study, which have more recently become interrelated through the language of tensor networks. The tantamount questions in the field relate to expressability of tensor networks and the reduction of computational overheads. A merger of tensor networks with machine learning is natural. On the one hand, machine learning can aid in determining a factorization of a tensor network approximating a data set. On the other hand, a given tensor network structure can be viewed as a machine learning model. Herein the tensor network parameters are adjusted to learn or classify a data-set. In this survey we recover the basics of tensor networks and explain the ongoing effort to develop the theory of tensor networks in machine learning." @default.
- W4284967345 created "2022-07-10" @default.
- W4284967345 creator A5004111307 @default.
- W4284967345 creator A5060722360 @default.
- W4284967345 creator A5073809164 @default.
- W4284967345 creator A5079523895 @default.
- W4284967345 date "2022-10-05" @default.
- W4284967345 modified "2023-10-18" @default.
- W4284967345 title "Tensor networks in machine learning" @default.
- W4284967345 doi "https://doi.org/10.4171/mag/101" @default.
- W4284967345 hasPublicationYear "2022" @default.
- W4284967345 type Work @default.
- W4284967345 citedByCount "5" @default.
- W4284967345 countsByYear W42849673452023 @default.
- W4284967345 crossrefType "journal-article" @default.
- W4284967345 hasAuthorship W4284967345A5004111307 @default.
- W4284967345 hasAuthorship W4284967345A5060722360 @default.
- W4284967345 hasAuthorship W4284967345A5073809164 @default.
- W4284967345 hasAuthorship W4284967345A5079523895 @default.
- W4284967345 hasBestOaLocation W42849673451 @default.
- W4284967345 hasConcept C154945302 @default.
- W4284967345 hasConcept C155281189 @default.
- W4284967345 hasConcept C15744967 @default.
- W4284967345 hasConcept C202444582 @default.
- W4284967345 hasConcept C33923547 @default.
- W4284967345 hasConcept C41008148 @default.
- W4284967345 hasConceptScore W4284967345C154945302 @default.
- W4284967345 hasConceptScore W4284967345C155281189 @default.
- W4284967345 hasConceptScore W4284967345C15744967 @default.
- W4284967345 hasConceptScore W4284967345C202444582 @default.
- W4284967345 hasConceptScore W4284967345C33923547 @default.
- W4284967345 hasConceptScore W4284967345C41008148 @default.
- W4284967345 hasIssue "126" @default.
- W4284967345 hasLocation W42849673451 @default.
- W4284967345 hasLocation W42849673452 @default.
- W4284967345 hasOpenAccess W4284967345 @default.
- W4284967345 hasPrimaryLocation W42849673451 @default.
- W4284967345 hasRelatedWork W2053414256 @default.
- W4284967345 hasRelatedWork W2096946506 @default.
- W4284967345 hasRelatedWork W2350741829 @default.
- W4284967345 hasRelatedWork W2358668433 @default.
- W4284967345 hasRelatedWork W2376932109 @default.
- W4284967345 hasRelatedWork W2382290278 @default.
- W4284967345 hasRelatedWork W2390279801 @default.
- W4284967345 hasRelatedWork W2748952813 @default.
- W4284967345 hasRelatedWork W2899084033 @default.
- W4284967345 hasRelatedWork W3107474891 @default.
- W4284967345 isParatext "false" @default.
- W4284967345 isRetracted "false" @default.
- W4284967345 workType "article" @default.