Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284969399> ?p ?o ?g. }
- W4284969399 endingPage "T446" @default.
- W4284969399 startingPage "T435" @default.
- W4284969399 abstract "Deep learning (DL) seismic simulations have become a leading-edge field that could provide an effective alternative to traditional numerical solvers. We have developed a small-data-driven time-domain method for fast seismic simulations in complex media based on the physics-informed Fourier neural operator (FNO). Unlike most DL-based modeling schemes that either solve wave equations by embedding the physical constraints into the cost function or conduct physics-informed learning by incorporating the wave functions into convolutional neural networks (CNNs), the FNO uses a learning architecture similar to the structure of split-step Fourier wave propagators, which is composed of two CNNs formulated in the space and wavenumber domains, respectively. The space-domain CNN acts as a local trainable phase-screen compensation. The wavenumber-domain CNN represents a nonlocal spatial convolutional operator acting as a trainable wavenumber filter for the phase-shift process. The FNO method approximates the mathematical-physical behavior of wave equations through learning the mapping between seismic wavefields at different time/locations from training seismic data. That is, the learning process parameterizes the integral kernel directly in the Fourier space, so that we can establish an expressive and efficient architecture for a better balance between accuracy and performance than the traditional spatial CNNs. Applications to gradient, layered, and Marmousi velocity models demonstrate its performance in accuracy and efficiency. The FNO seismic simulation is a data-driven method that needs a small amount of training data, especially when using blended source training data. It is a discretization-independent method that is not subject to the limitation of spatial sampling and time steps imposed on traditional numerical solvers, implying that the training data can be discretized arbitrarily. It also is a model-independent method that can include absorption attenuation into seismic modeling without the need of viscoelastic wave equations." @default.
- W4284969399 created "2022-07-10" @default.
- W4284969399 creator A5051157077 @default.
- W4284969399 creator A5055711721 @default.
- W4284969399 date "2022-11-01" @default.
- W4284969399 modified "2023-10-10" @default.
- W4284969399 title "Small-data-driven fast seismic simulations for complex media using physics-informed Fourier neural operators" @default.
- W4284969399 cites W1496781643 @default.
- W4284969399 cites W1637804938 @default.
- W4284969399 cites W1979581468 @default.
- W4284969399 cites W1985883290 @default.
- W4284969399 cites W1995341919 @default.
- W4284969399 cites W2024235597 @default.
- W4284969399 cites W2050371847 @default.
- W4284969399 cites W2053376610 @default.
- W4284969399 cites W2078496737 @default.
- W4284969399 cites W2082213597 @default.
- W4284969399 cites W2113143455 @default.
- W4284969399 cites W2148631859 @default.
- W4284969399 cites W2155397055 @default.
- W4284969399 cites W2172044679 @default.
- W4284969399 cites W2172266042 @default.
- W4284969399 cites W2194775991 @default.
- W4284969399 cites W2601307685 @default.
- W4284969399 cites W2605147767 @default.
- W4284969399 cites W2616135506 @default.
- W4284969399 cites W2776585113 @default.
- W4284969399 cites W2808760859 @default.
- W4284969399 cites W2810812775 @default.
- W4284969399 cites W2891968093 @default.
- W4284969399 cites W2923484039 @default.
- W4284969399 cites W2947704004 @default.
- W4284969399 cites W2966965831 @default.
- W4284969399 cites W2968094316 @default.
- W4284969399 cites W2970228285 @default.
- W4284969399 cites W2988434973 @default.
- W4284969399 cites W3047035577 @default.
- W4284969399 cites W3048220070 @default.
- W4284969399 cites W3091361582 @default.
- W4284969399 cites W3091740281 @default.
- W4284969399 cites W3120334342 @default.
- W4284969399 cites W3124477118 @default.
- W4284969399 cites W3159428095 @default.
- W4284969399 cites W3163993681 @default.
- W4284969399 cites W4244591085 @default.
- W4284969399 doi "https://doi.org/10.1190/geo2021-0573.1" @default.
- W4284969399 hasPublicationYear "2022" @default.
- W4284969399 type Work @default.
- W4284969399 citedByCount "2" @default.
- W4284969399 countsByYear W42849693992023 @default.
- W4284969399 crossrefType "journal-article" @default.
- W4284969399 hasAuthorship W4284969399A5051157077 @default.
- W4284969399 hasAuthorship W4284969399A5055711721 @default.
- W4284969399 hasConcept C102519508 @default.
- W4284969399 hasConcept C104317684 @default.
- W4284969399 hasConcept C108583219 @default.
- W4284969399 hasConcept C11413529 @default.
- W4284969399 hasConcept C114614502 @default.
- W4284969399 hasConcept C120665830 @default.
- W4284969399 hasConcept C121130766 @default.
- W4284969399 hasConcept C121332964 @default.
- W4284969399 hasConcept C134306372 @default.
- W4284969399 hasConcept C154945302 @default.
- W4284969399 hasConcept C158448853 @default.
- W4284969399 hasConcept C17020691 @default.
- W4284969399 hasConcept C185592680 @default.
- W4284969399 hasConcept C19118579 @default.
- W4284969399 hasConcept C31972630 @default.
- W4284969399 hasConcept C33923547 @default.
- W4284969399 hasConcept C41008148 @default.
- W4284969399 hasConcept C45347329 @default.
- W4284969399 hasConcept C50644808 @default.
- W4284969399 hasConcept C55493867 @default.
- W4284969399 hasConcept C73000952 @default.
- W4284969399 hasConcept C74193536 @default.
- W4284969399 hasConcept C75172450 @default.
- W4284969399 hasConcept C81363708 @default.
- W4284969399 hasConcept C86339819 @default.
- W4284969399 hasConceptScore W4284969399C102519508 @default.
- W4284969399 hasConceptScore W4284969399C104317684 @default.
- W4284969399 hasConceptScore W4284969399C108583219 @default.
- W4284969399 hasConceptScore W4284969399C11413529 @default.
- W4284969399 hasConceptScore W4284969399C114614502 @default.
- W4284969399 hasConceptScore W4284969399C120665830 @default.
- W4284969399 hasConceptScore W4284969399C121130766 @default.
- W4284969399 hasConceptScore W4284969399C121332964 @default.
- W4284969399 hasConceptScore W4284969399C134306372 @default.
- W4284969399 hasConceptScore W4284969399C154945302 @default.
- W4284969399 hasConceptScore W4284969399C158448853 @default.
- W4284969399 hasConceptScore W4284969399C17020691 @default.
- W4284969399 hasConceptScore W4284969399C185592680 @default.
- W4284969399 hasConceptScore W4284969399C19118579 @default.
- W4284969399 hasConceptScore W4284969399C31972630 @default.
- W4284969399 hasConceptScore W4284969399C33923547 @default.
- W4284969399 hasConceptScore W4284969399C41008148 @default.
- W4284969399 hasConceptScore W4284969399C45347329 @default.
- W4284969399 hasConceptScore W4284969399C50644808 @default.
- W4284969399 hasConceptScore W4284969399C55493867 @default.