Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284975118> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4284975118 endingPage "223" @default.
- W4284975118 startingPage "205" @default.
- W4284975118 abstract "Summary This article investigates the statistical problem of response-variable selection with high-dimensional response variables and a diverging number of predictor variables with respect to the sample size in the framework of multivariate linear regression. A response best-subset selection model is proposed by introducing a 0-1 selection indicator for each response variable, and then a response best-subset selector is developed by introducing a separation parameter and a novel penalized least-squares function. The proposed procedure can perform response-variable selection and regression-coefficient estimation simultaneously, and the response best-subset selector has the property of model consistency under mild conditions for both fixed and diverging numbers of predictor variables. Also, consistency and asymptotic normality of regression-coefficient estimators are established for cases with a fixed dimension, and it is found that the Bonferroni test is a special response best-subset selector. Finite-sample simulations show that the response best-subset selector has strong advantages over existing competitors in terms of the Matthews correlation coefficient, a criterion that aims to balance accuracies for both true and false response variables. An analysis of real data demonstrates the effectiveness of the response best-subset selector in an application involving the identification of dosage-sensitive genes." @default.
- W4284975118 created "2022-07-10" @default.
- W4284975118 creator A5007318273 @default.
- W4284975118 creator A5012067697 @default.
- W4284975118 creator A5013803387 @default.
- W4284975118 creator A5048908927 @default.
- W4284975118 date "2022-07-08" @default.
- W4284975118 modified "2023-10-05" @default.
- W4284975118 title "Response best-subset selector for multivariate regression with high-dimensional response variables" @default.
- W4284975118 cites W1596515083 @default.
- W4284975118 cites W1966938977 @default.
- W4284975118 cites W1995060290 @default.
- W4284975118 cites W2008573782 @default.
- W4284975118 cites W2014606320 @default.
- W4284975118 cites W2020925091 @default.
- W4284975118 cites W2040825813 @default.
- W4284975118 cites W2045916345 @default.
- W4284975118 cites W2068393255 @default.
- W4284975118 cites W2076356585 @default.
- W4284975118 cites W2081297271 @default.
- W4284975118 cites W2090257125 @default.
- W4284975118 cites W2091661032 @default.
- W4284975118 cites W2098290597 @default.
- W4284975118 cites W2109553965 @default.
- W4284975118 cites W2126864982 @default.
- W4284975118 cites W2131230871 @default.
- W4284975118 cites W2135665336 @default.
- W4284975118 cites W2154361640 @default.
- W4284975118 cites W2412990135 @default.
- W4284975118 cites W2509064655 @default.
- W4284975118 cites W2753263062 @default.
- W4284975118 cites W4298248278 @default.
- W4284975118 cites W4362230038 @default.
- W4284975118 doi "https://doi.org/10.1093/biomet/asac037" @default.
- W4284975118 hasPublicationYear "2022" @default.
- W4284975118 type Work @default.
- W4284975118 citedByCount "0" @default.
- W4284975118 crossrefType "journal-article" @default.
- W4284975118 hasAuthorship W4284975118A5007318273 @default.
- W4284975118 hasAuthorship W4284975118A5012067697 @default.
- W4284975118 hasAuthorship W4284975118A5013803387 @default.
- W4284975118 hasAuthorship W4284975118A5048908927 @default.
- W4284975118 hasConcept C105795698 @default.
- W4284975118 hasConcept C129848803 @default.
- W4284975118 hasConcept C148483581 @default.
- W4284975118 hasConcept C152877465 @default.
- W4284975118 hasConcept C154945302 @default.
- W4284975118 hasConcept C161584116 @default.
- W4284975118 hasConcept C185429906 @default.
- W4284975118 hasConcept C2524010 @default.
- W4284975118 hasConcept C2776436953 @default.
- W4284975118 hasConcept C33923547 @default.
- W4284975118 hasConcept C41008148 @default.
- W4284975118 hasConcept C48921125 @default.
- W4284975118 hasConceptScore W4284975118C105795698 @default.
- W4284975118 hasConceptScore W4284975118C129848803 @default.
- W4284975118 hasConceptScore W4284975118C148483581 @default.
- W4284975118 hasConceptScore W4284975118C152877465 @default.
- W4284975118 hasConceptScore W4284975118C154945302 @default.
- W4284975118 hasConceptScore W4284975118C161584116 @default.
- W4284975118 hasConceptScore W4284975118C185429906 @default.
- W4284975118 hasConceptScore W4284975118C2524010 @default.
- W4284975118 hasConceptScore W4284975118C2776436953 @default.
- W4284975118 hasConceptScore W4284975118C33923547 @default.
- W4284975118 hasConceptScore W4284975118C41008148 @default.
- W4284975118 hasConceptScore W4284975118C48921125 @default.
- W4284975118 hasFunder F4320321001 @default.
- W4284975118 hasFunder F4320322598 @default.
- W4284975118 hasIssue "1" @default.
- W4284975118 hasLocation W42849751181 @default.
- W4284975118 hasOpenAccess W4284975118 @default.
- W4284975118 hasPrimaryLocation W42849751181 @default.
- W4284975118 hasRelatedWork W1570805059 @default.
- W4284975118 hasRelatedWork W1578824628 @default.
- W4284975118 hasRelatedWork W1990068454 @default.
- W4284975118 hasRelatedWork W1991765889 @default.
- W4284975118 hasRelatedWork W2324780611 @default.
- W4284975118 hasRelatedWork W2357266745 @default.
- W4284975118 hasRelatedWork W2406638334 @default.
- W4284975118 hasRelatedWork W2472172556 @default.
- W4284975118 hasRelatedWork W2496077116 @default.
- W4284975118 hasRelatedWork W4293088233 @default.
- W4284975118 hasVolume "110" @default.
- W4284975118 isParatext "false" @default.
- W4284975118 isRetracted "false" @default.
- W4284975118 workType "article" @default.