Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284977272> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4284977272 endingPage "118043" @default.
- W4284977272 startingPage "118043" @default.
- W4284977272 abstract "• A new sales forecasting model that integrates Best-Worst and k-Means methods. • Best-Worst Method is utilized to extract significant forecasting criteria. • K-means method is applied to improve the quality of product clustering results. • The RFM model is used to assess the product. Inaccurate sales forecasting (SF) leads to over-stock or stock-out, in which can increase inventory costs, thereby reducing profits and return on investment. Furthermore, stock-out can eliminate customer loyalty, as well as opportunities to acquire new customers, and maximize sales or competitive advantage. This study proposed a retail SF model called the SalesKBR, which integrates the decision-making (Best-Worst Method/BWM) and the data mining methods (k-Means) into the Recency-Frequency-Monetary (RFM) model. The BWM was used to extract criteria that have a significant influence on retail SF. The k-Means method and six validity indices were applied to improve the quality of the product clustering results, while the RFM model was used for assessment. The extraction results from BWM that correlate with the retail company databases showed the criteria that significantly affect SF are frequency, quantity, and monetary. The results also showed that SalesKBR is a retail SF model with a reasonable level of accuracy. Therefore, it can be utilized to forecast retail sales, and it has the potential to be an alternative solution for making scientific and valuable management decisions." @default.
- W4284977272 created "2022-07-10" @default.
- W4284977272 creator A5036188698 @default.
- W4284977272 creator A5063171585 @default.
- W4284977272 creator A5091112716 @default.
- W4284977272 date "2022-11-01" @default.
- W4284977272 modified "2023-10-16" @default.
- W4284977272 title "An approach for sales forecasting" @default.
- W4284977272 cites W1987971958 @default.
- W4284977272 cites W1990368529 @default.
- W4284977272 cites W2051224630 @default.
- W4284977272 cites W2090658088 @default.
- W4284977272 cites W2891890431 @default.
- W4284977272 cites W2900296094 @default.
- W4284977272 cites W2923074951 @default.
- W4284977272 cites W2940690822 @default.
- W4284977272 cites W2965723852 @default.
- W4284977272 cites W2970033419 @default.
- W4284977272 cites W2986169917 @default.
- W4284977272 cites W2994471203 @default.
- W4284977272 cites W2996532790 @default.
- W4284977272 cites W2997062789 @default.
- W4284977272 cites W3025174351 @default.
- W4284977272 cites W3081491601 @default.
- W4284977272 cites W3086483906 @default.
- W4284977272 cites W3129424450 @default.
- W4284977272 cites W3135141542 @default.
- W4284977272 cites W3157457070 @default.
- W4284977272 cites W3158163814 @default.
- W4284977272 cites W3159651487 @default.
- W4284977272 cites W3167835154 @default.
- W4284977272 cites W3186082523 @default.
- W4284977272 cites W3211734109 @default.
- W4284977272 cites W4206062825 @default.
- W4284977272 cites W4221092825 @default.
- W4284977272 cites W4226144567 @default.
- W4284977272 doi "https://doi.org/10.1016/j.eswa.2022.118043" @default.
- W4284977272 hasPublicationYear "2022" @default.
- W4284977272 type Work @default.
- W4284977272 citedByCount "1" @default.
- W4284977272 countsByYear W42849772722023 @default.
- W4284977272 crossrefType "journal-article" @default.
- W4284977272 hasAuthorship W4284977272A5036188698 @default.
- W4284977272 hasAuthorship W4284977272A5063171585 @default.
- W4284977272 hasAuthorship W4284977272A5091112716 @default.
- W4284977272 hasConcept C144133560 @default.
- W4284977272 hasConcept C154945302 @default.
- W4284977272 hasConcept C162853370 @default.
- W4284977272 hasConcept C2984642479 @default.
- W4284977272 hasConcept C41008148 @default.
- W4284977272 hasConceptScore W4284977272C144133560 @default.
- W4284977272 hasConceptScore W4284977272C154945302 @default.
- W4284977272 hasConceptScore W4284977272C162853370 @default.
- W4284977272 hasConceptScore W4284977272C2984642479 @default.
- W4284977272 hasConceptScore W4284977272C41008148 @default.
- W4284977272 hasLocation W42849772721 @default.
- W4284977272 hasOpenAccess W4284977272 @default.
- W4284977272 hasPrimaryLocation W42849772721 @default.
- W4284977272 hasRelatedWork W2093578348 @default.
- W4284977272 hasRelatedWork W2350741829 @default.
- W4284977272 hasRelatedWork W2358668433 @default.
- W4284977272 hasRelatedWork W2376932109 @default.
- W4284977272 hasRelatedWork W2382290278 @default.
- W4284977272 hasRelatedWork W2390279801 @default.
- W4284977272 hasRelatedWork W2748952813 @default.
- W4284977272 hasRelatedWork W2766271392 @default.
- W4284977272 hasRelatedWork W2899084033 @default.
- W4284977272 hasRelatedWork W3107474891 @default.
- W4284977272 hasVolume "207" @default.
- W4284977272 isParatext "false" @default.
- W4284977272 isRetracted "false" @default.
- W4284977272 workType "article" @default.