Matches in SemOpenAlex for { <https://semopenalex.org/work/W4284991160> ?p ?o ?g. }
- W4284991160 endingPage "118104" @default.
- W4284991160 startingPage "118104" @default.
- W4284991160 abstract "• A novel structure adaptive fractional discrete grey forecasting model is proposed. • A novel fractional accumulation operator with a parameter is developed. • This paper conducts the robustness analysis of the FDGM ( 1 , 1 , k , r ) model. • The prediction performance of the new model is better than the other six models. • Crude oil production of the three regions in the next three years are forecasted. Crude oil resources are related to all aspects of people's life, and play a vital role in the development of the national economy. Using nonlinear discrete data to reasonably predict crude oil production can help the government adjust energy structure and formulate energy development strategy, which has great practical significance. In this paper, a novel r-order accumulation operation with a parameter is proposed, and a novel structure adaptive fractional discrete grey forecasting model is established. Several classical optimization algorithms are compared, and the Grey Wolf Optimizer (GWO) is selected to calculate the parameters. For testifying the effectiveness of the model, a prediction model is constructed based on the total crude oil production in Qinghai, Liaoning and Shaanxi provinces of China, and a performance comparison experiment is designed with the existing six grey models. In addition, Monte Carlo simulation and probability density analysis provide a new perspective to further illustrate the robustness and accuracy of the proposed model. The experimental results show that this model is superior to the other six models in terms of fitting accuracy, prediction accuracy and model stability." @default.
- W4284991160 created "2022-07-11" @default.
- W4284991160 creator A5007735063 @default.
- W4284991160 creator A5012278873 @default.
- W4284991160 creator A5032613807 @default.
- W4284991160 creator A5052762805 @default.
- W4284991160 creator A5057085664 @default.
- W4284991160 creator A5059819810 @default.
- W4284991160 creator A5066102428 @default.
- W4284991160 creator A5070296642 @default.
- W4284991160 creator A5071798264 @default.
- W4284991160 creator A5078036018 @default.
- W4284991160 creator A5081736389 @default.
- W4284991160 date "2022-11-01" @default.
- W4284991160 modified "2023-10-15" @default.
- W4284991160 title "A novel structure adaptive fractional discrete grey forecasting model and its application in China’s crude oil production prediction" @default.
- W4284991160 cites W1953415283 @default.
- W4284991160 cites W1964768963 @default.
- W4284991160 cites W1992665910 @default.
- W4284991160 cites W2013377700 @default.
- W4284991160 cites W2036014202 @default.
- W4284991160 cites W2061438946 @default.
- W4284991160 cites W2083038452 @default.
- W4284991160 cites W2087120645 @default.
- W4284991160 cites W2089006525 @default.
- W4284991160 cites W2137295153 @default.
- W4284991160 cites W2218802200 @default.
- W4284991160 cites W2494809744 @default.
- W4284991160 cites W2770987132 @default.
- W4284991160 cites W2796779422 @default.
- W4284991160 cites W2799398830 @default.
- W4284991160 cites W2804202111 @default.
- W4284991160 cites W2893850211 @default.
- W4284991160 cites W2898330284 @default.
- W4284991160 cites W2898604056 @default.
- W4284991160 cites W2914451237 @default.
- W4284991160 cites W2922456124 @default.
- W4284991160 cites W2925774145 @default.
- W4284991160 cites W2945547537 @default.
- W4284991160 cites W2946725770 @default.
- W4284991160 cites W2949723021 @default.
- W4284991160 cites W2996549886 @default.
- W4284991160 cites W3017210658 @default.
- W4284991160 cites W3031378268 @default.
- W4284991160 cites W3036617771 @default.
- W4284991160 cites W3042311080 @default.
- W4284991160 cites W3043155466 @default.
- W4284991160 cites W3112831043 @default.
- W4284991160 cites W3119720317 @default.
- W4284991160 cites W3120779329 @default.
- W4284991160 cites W3124329643 @default.
- W4284991160 cites W3153062128 @default.
- W4284991160 cites W3193473132 @default.
- W4284991160 cites W3209354528 @default.
- W4284991160 cites W3217801652 @default.
- W4284991160 cites W4200000569 @default.
- W4284991160 cites W4207004978 @default.
- W4284991160 cites W4211240201 @default.
- W4284991160 cites W4225278767 @default.
- W4284991160 doi "https://doi.org/10.1016/j.eswa.2022.118104" @default.
- W4284991160 hasPublicationYear "2022" @default.
- W4284991160 type Work @default.
- W4284991160 citedByCount "11" @default.
- W4284991160 countsByYear W42849911602022 @default.
- W4284991160 countsByYear W42849911602023 @default.
- W4284991160 crossrefType "journal-article" @default.
- W4284991160 hasAuthorship W4284991160A5007735063 @default.
- W4284991160 hasAuthorship W4284991160A5012278873 @default.
- W4284991160 hasAuthorship W4284991160A5032613807 @default.
- W4284991160 hasAuthorship W4284991160A5052762805 @default.
- W4284991160 hasAuthorship W4284991160A5057085664 @default.
- W4284991160 hasAuthorship W4284991160A5059819810 @default.
- W4284991160 hasAuthorship W4284991160A5066102428 @default.
- W4284991160 hasAuthorship W4284991160A5070296642 @default.
- W4284991160 hasAuthorship W4284991160A5071798264 @default.
- W4284991160 hasAuthorship W4284991160A5078036018 @default.
- W4284991160 hasAuthorship W4284991160A5081736389 @default.
- W4284991160 hasConcept C127313418 @default.
- W4284991160 hasConcept C139719470 @default.
- W4284991160 hasConcept C149782125 @default.
- W4284991160 hasConcept C154945302 @default.
- W4284991160 hasConcept C162324750 @default.
- W4284991160 hasConcept C17744445 @default.
- W4284991160 hasConcept C191935318 @default.
- W4284991160 hasConcept C199539241 @default.
- W4284991160 hasConcept C2778348673 @default.
- W4284991160 hasConcept C2984309096 @default.
- W4284991160 hasConcept C2987168347 @default.
- W4284991160 hasConcept C33923547 @default.
- W4284991160 hasConcept C41008148 @default.
- W4284991160 hasConcept C78762247 @default.
- W4284991160 hasConceptScore W4284991160C127313418 @default.
- W4284991160 hasConceptScore W4284991160C139719470 @default.
- W4284991160 hasConceptScore W4284991160C149782125 @default.
- W4284991160 hasConceptScore W4284991160C154945302 @default.
- W4284991160 hasConceptScore W4284991160C162324750 @default.
- W4284991160 hasConceptScore W4284991160C17744445 @default.
- W4284991160 hasConceptScore W4284991160C191935318 @default.