Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285010277> ?p ?o ?g. }
- W4285010277 endingPage "253" @default.
- W4285010277 startingPage "202" @default.
- W4285010277 abstract "Three families of super-resolution (SR) wavelets Ψv,ng(x), Ψu,n,ms(x) and Ψw,n,mds(x), to be called Gaussian SR (GSR), spline SR (SSR) and dual-spline SR (DSSR) wavelets, respectively, are introduced in this paper for resolving the super-resolution problem of recovering any point-mass h(y)=∑ℓ=1Lcℓδ(y−σℓ), with |σℓ−σk|≥η for ℓ≠k, σℓ≠0, and |cℓ|>η⁎ for all ℓ,k=1,…,L, where η>0 and η⁎>0 are allowed to be arbitrarily small. Let Ψα,n=Ψv,ng, Ψu,n,ms or Ψw,n,mds, with α=v,u or w, respectively, where m=12,1,2,⋯ is suppressed. The SR wavelets are designed to have the n-th order of vanishing moments, with Fourier transform of their complex conjugates Ψ¯ˆα,n(x) to possess the following properties: (i) Ψ¯ˆα,n(x)≥0 for all x∈R, (ii) maxxΨ¯ˆα,n(x)=Ψ¯ˆα,n(κ)=ξn, where κ≐2.331122371 and ξ≐1.449222080 are positive constants independent of n,α and m, and (iii) the widths (or standard deviations) of Ψ¯ˆα,n(x), with center at κ, tends to 0 very fast for large values of α. While the most popular approach to resolve this super-resolution problem is to consider the Fourier transform d(x)=∑ℓ=1Lcℓe−iσℓx of h(y) as the “data function” for solving the inverse problem of recovering L, σ1,⋯,σL and c1,⋯,cL of the point-mass d(x), our proposed approach is to consider the “enhanced data function” D(a;α,n):=FΨα,n(a)=∑ℓ=1LcℓΨ¯ˆα,n(aσℓ), where FΨα,n(a), to be called the search function in this paper, is obtained by taking the continuous wavelet transform (CWT): (WΨα,nd)(t,a)=∫−∞∞Ψα,n(y−ta)‾d(y)dya of the data function d(x), with Ψα,n as the analysis wavelet, followed by applying wavelet thresholding to “de-noise” the data function d(x), by choosing an appropriate thresholding parameter γ>0, with γ<η⁎×ξn, in order not to remove any of the coefficients cℓ, where ℓ=1,⋯,L; and finally by setting t=0. Hence, the enhanced data function D(a;α,n) is at least cleaner than the data function d(x). In our proposed approach, instead of directly recovering σ1,⋯,σL as in the published literature, we propose a “divide and conquer” strategy: first by applying “bottom-up thresholding” of the search function FΨα,n(a), with thresholding parameter γ⁎>0 close to but not exceeding η⁎×ξn, to separate the set of the local extrema locations aℓ:=κσℓ of the function FΨα,n(a) in {a∈R:a≠0} into disjoint intervals of clusters, with more and smaller intervals and less number of local extrema aℓ in each interval for larger values of α; and secondly, by applying “top-down thresholding” to extract, one-by-one, of all local maxima, followed by all local minima (after a sign change), for each and every cluster. A desired leeway Δ>0 and lower bounds of the choice of the width parameter α are derived for the iterative application of top-down thresholding. Extension to Rs for s≥2 is also studied in this paper. For s=2, we observe that the imagery of the enhanced data function for a single point-mass at (σ1,σ2) where σ1,σ2≠0, resembles that of an “Airy disk” with center at (κ/σ1,κ/σ2) in light microscopy and celestial telescopy of point-masses." @default.
- W4285010277 created "2022-07-12" @default.
- W4285010277 creator A5080019930 @default.
- W4285010277 date "2022-11-01" @default.
- W4285010277 modified "2023-09-28" @default.
- W4285010277 title "Super-resolution wavelets for recovery of arbitrarily close point-masses with arbitrarily small coefficients" @default.
- W4285010277 cites W1571780702 @default.
- W4285010277 cites W1964081796 @default.
- W4285010277 cites W1966937146 @default.
- W4285010277 cites W1976799229 @default.
- W4285010277 cites W1985806826 @default.
- W4285010277 cites W2018778093 @default.
- W4285010277 cites W2026557492 @default.
- W4285010277 cites W2030521421 @default.
- W4285010277 cites W2036449328 @default.
- W4285010277 cites W2041242237 @default.
- W4285010277 cites W2045435533 @default.
- W4285010277 cites W2050480410 @default.
- W4285010277 cites W2057603175 @default.
- W4285010277 cites W2065051763 @default.
- W4285010277 cites W2072116332 @default.
- W4285010277 cites W2075480116 @default.
- W4285010277 cites W2076481311 @default.
- W4285010277 cites W2076963649 @default.
- W4285010277 cites W2119499160 @default.
- W4285010277 cites W2120503144 @default.
- W4285010277 cites W2139203673 @default.
- W4285010277 cites W2149751339 @default.
- W4285010277 cites W2158940042 @default.
- W4285010277 cites W2331342422 @default.
- W4285010277 cites W2471604734 @default.
- W4285010277 cites W2739492417 @default.
- W4285010277 cites W2791510628 @default.
- W4285010277 cites W2903205844 @default.
- W4285010277 cites W2962759130 @default.
- W4285010277 cites W2963270586 @default.
- W4285010277 cites W2963475898 @default.
- W4285010277 cites W2963748825 @default.
- W4285010277 cites W2963860509 @default.
- W4285010277 cites W2963956746 @default.
- W4285010277 cites W2964325628 @default.
- W4285010277 cites W2990436921 @default.
- W4285010277 cites W3006973358 @default.
- W4285010277 cites W3025444082 @default.
- W4285010277 cites W3039872457 @default.
- W4285010277 cites W3091988525 @default.
- W4285010277 cites W3093566224 @default.
- W4285010277 cites W3098717448 @default.
- W4285010277 cites W3103531188 @default.
- W4285010277 cites W3108935522 @default.
- W4285010277 cites W3109239781 @default.
- W4285010277 cites W3128452905 @default.
- W4285010277 cites W3139184535 @default.
- W4285010277 cites W3145016102 @default.
- W4285010277 cites W3203155614 @default.
- W4285010277 cites W4205566328 @default.
- W4285010277 cites W4210713738 @default.
- W4285010277 cites W4250955649 @default.
- W4285010277 doi "https://doi.org/10.1016/j.acha.2022.07.003" @default.
- W4285010277 hasPublicationYear "2022" @default.
- W4285010277 type Work @default.
- W4285010277 citedByCount "4" @default.
- W4285010277 countsByYear W42850102772022 @default.
- W4285010277 countsByYear W42850102772023 @default.
- W4285010277 crossrefType "journal-article" @default.
- W4285010277 hasAuthorship W4285010277A5080019930 @default.
- W4285010277 hasConcept C10138342 @default.
- W4285010277 hasConcept C102519508 @default.
- W4285010277 hasConcept C10390562 @default.
- W4285010277 hasConcept C113196181 @default.
- W4285010277 hasConcept C114614502 @default.
- W4285010277 hasConcept C121332964 @default.
- W4285010277 hasConcept C134306372 @default.
- W4285010277 hasConcept C138268822 @default.
- W4285010277 hasConcept C154945302 @default.
- W4285010277 hasConcept C162324750 @default.
- W4285010277 hasConcept C182306322 @default.
- W4285010277 hasConcept C185592680 @default.
- W4285010277 hasConcept C207467116 @default.
- W4285010277 hasConcept C2524010 @default.
- W4285010277 hasConcept C33923547 @default.
- W4285010277 hasConcept C41008148 @default.
- W4285010277 hasConcept C43617362 @default.
- W4285010277 hasConcept C47432892 @default.
- W4285010277 hasConcept C97355855 @default.
- W4285010277 hasConceptScore W4285010277C10138342 @default.
- W4285010277 hasConceptScore W4285010277C102519508 @default.
- W4285010277 hasConceptScore W4285010277C10390562 @default.
- W4285010277 hasConceptScore W4285010277C113196181 @default.
- W4285010277 hasConceptScore W4285010277C114614502 @default.
- W4285010277 hasConceptScore W4285010277C121332964 @default.
- W4285010277 hasConceptScore W4285010277C134306372 @default.
- W4285010277 hasConceptScore W4285010277C138268822 @default.
- W4285010277 hasConceptScore W4285010277C154945302 @default.
- W4285010277 hasConceptScore W4285010277C162324750 @default.
- W4285010277 hasConceptScore W4285010277C182306322 @default.
- W4285010277 hasConceptScore W4285010277C185592680 @default.
- W4285010277 hasConceptScore W4285010277C207467116 @default.