Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285011230> ?p ?o ?g. }
- W4285011230 endingPage "2792" @default.
- W4285011230 startingPage "2776" @default.
- W4285011230 abstract "Abstract Accurate earthquake source parameters (e.g., magnitude, source location, and focal mechanism) are of key importance in seismic source studies and seismic hazard assessments. The routine workflow of source parameters estimation consists of two steps: source location inversion and focal mechanism inversion. Separate inversion of source parameters is subject to the cumulative uncertainties of both two steps inversion processes. Markov Chain Monte Carlo (MCMC), as global optimization, has been adopted in many nonlinear inversion problems to reduce cumulative errors and provide uncertainty assessment, but the application of MCMC is strongly subject to prior information. In this study, we present a new Python package MCMTpy. MCMTpy exploits the Cut-And-Paste (CAP) algorithm and Bayesian inference, using Markov Chain to implement the source location inversion and focal mechanism inversion in one inversion workflow. The new approach can effectively reduce the prior model dependence, and is closely integrated into the current seismological programming ecosystem. To demonstrate the effectiveness of the new package, we applied the MCMTpy to the 2021 Ms 6.4 Yangbi earthquake, Yunnan, China, and 2008 Mw 5.2 Mt. Carmel Earthquake, Illinois. A comparison between our results and other catalogs (e.g., Global Centroid Moment Tensor and U.S. Geological Survey W-phase) solutions illustrates that both double-couple and moment tensor solutions can be reliably recovered. The robustness and limitations of our approach are demonstrated by an experiment with 30 different initial models and an experiment with the grid-search method." @default.
- W4285011230 created "2022-07-12" @default.
- W4285011230 creator A5010480505 @default.
- W4285011230 creator A5018548867 @default.
- W4285011230 date "2022-07-11" @default.
- W4285011230 modified "2023-10-14" @default.
- W4285011230 title "MCMTpy: A Python Package for Source Parameters Inversion Based on Cut-and-Paste Algorithm and Markov Chain Monte Carlo" @default.
- W4285011230 cites W173997870 @default.
- W4285011230 cites W1803019238 @default.
- W4285011230 cites W1965270678 @default.
- W4285011230 cites W1973287273 @default.
- W4285011230 cites W2001032894 @default.
- W4285011230 cites W2005673165 @default.
- W4285011230 cites W2011301426 @default.
- W4285011230 cites W2027028088 @default.
- W4285011230 cites W2044686992 @default.
- W4285011230 cites W2056760934 @default.
- W4285011230 cites W2074554799 @default.
- W4285011230 cites W2088443388 @default.
- W4285011230 cites W2100344690 @default.
- W4285011230 cites W2108225522 @default.
- W4285011230 cites W2108897387 @default.
- W4285011230 cites W2112393517 @default.
- W4285011230 cites W2120321017 @default.
- W4285011230 cites W2124838897 @default.
- W4285011230 cites W2126487212 @default.
- W4285011230 cites W2127150969 @default.
- W4285011230 cites W2136138284 @default.
- W4285011230 cites W2140548646 @default.
- W4285011230 cites W2141133733 @default.
- W4285011230 cites W2142542473 @default.
- W4285011230 cites W2151824041 @default.
- W4285011230 cites W2160190797 @default.
- W4285011230 cites W2165153284 @default.
- W4285011230 cites W2165173881 @default.
- W4285011230 cites W2167750495 @default.
- W4285011230 cites W2181494905 @default.
- W4285011230 cites W2316764046 @default.
- W4285011230 cites W2331831130 @default.
- W4285011230 cites W2347006227 @default.
- W4285011230 cites W2512851087 @default.
- W4285011230 cites W2513244281 @default.
- W4285011230 cites W2606312522 @default.
- W4285011230 cites W2618283717 @default.
- W4285011230 cites W2744577470 @default.
- W4285011230 cites W2793900496 @default.
- W4285011230 cites W2803819148 @default.
- W4285011230 cites W2805317309 @default.
- W4285011230 cites W2810146108 @default.
- W4285011230 cites W2810308201 @default.
- W4285011230 cites W2896770327 @default.
- W4285011230 cites W2936524161 @default.
- W4285011230 cites W2969002203 @default.
- W4285011230 cites W2972175553 @default.
- W4285011230 cites W2982385529 @default.
- W4285011230 cites W3000861451 @default.
- W4285011230 cites W3033197649 @default.
- W4285011230 cites W3044945577 @default.
- W4285011230 cites W3052105306 @default.
- W4285011230 cites W3157568328 @default.
- W4285011230 cites W3189310266 @default.
- W4285011230 cites W4230745217 @default.
- W4285011230 cites W996095086 @default.
- W4285011230 doi "https://doi.org/10.1785/0220210336" @default.
- W4285011230 hasPublicationYear "2022" @default.
- W4285011230 type Work @default.
- W4285011230 citedByCount "1" @default.
- W4285011230 countsByYear W42850112302023 @default.
- W4285011230 crossrefType "journal-article" @default.
- W4285011230 hasAuthorship W4285011230A5010480505 @default.
- W4285011230 hasAuthorship W4285011230A5018548867 @default.
- W4285011230 hasConcept C105795698 @default.
- W4285011230 hasConcept C107673813 @default.
- W4285011230 hasConcept C111350023 @default.
- W4285011230 hasConcept C111919701 @default.
- W4285011230 hasConcept C11413529 @default.
- W4285011230 hasConcept C119857082 @default.
- W4285011230 hasConcept C124101348 @default.
- W4285011230 hasConcept C127313418 @default.
- W4285011230 hasConcept C154945302 @default.
- W4285011230 hasConcept C165205528 @default.
- W4285011230 hasConcept C177212765 @default.
- W4285011230 hasConcept C1893757 @default.
- W4285011230 hasConcept C19499675 @default.
- W4285011230 hasConcept C33923547 @default.
- W4285011230 hasConcept C41008148 @default.
- W4285011230 hasConcept C43126263 @default.
- W4285011230 hasConcept C519991488 @default.
- W4285011230 hasConcept C77088390 @default.
- W4285011230 hasConcept C77928131 @default.
- W4285011230 hasConcept C98763669 @default.
- W4285011230 hasConceptScore W4285011230C105795698 @default.
- W4285011230 hasConceptScore W4285011230C107673813 @default.
- W4285011230 hasConceptScore W4285011230C111350023 @default.
- W4285011230 hasConceptScore W4285011230C111919701 @default.
- W4285011230 hasConceptScore W4285011230C11413529 @default.
- W4285011230 hasConceptScore W4285011230C119857082 @default.
- W4285011230 hasConceptScore W4285011230C124101348 @default.