Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285011618> ?p ?o ?g. }
- W4285011618 endingPage "6967" @default.
- W4285011618 startingPage "6967" @default.
- W4285011618 abstract "Background: Parkinson’s disease (PD) affects 7–10 million people worldwide. Its diagnosis is clinical and can be supported by image-based tests, which are expensive and not always accessible. Electroencephalograms (EEG) are non-invasive, widely accessible, low-cost tests. However, the signals obtained are difficult to analyze visually, so advanced techniques, such as Machine Learning (ML), need to be used. In this article, we review those studies that consider ML techniques to study the EEG of patients with PD. Methods: The review process was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, which are used to provide quality standards for the objective evaluation of various studies. All publications before February 2022 were included, and their main characteristics and results were evaluated and documented through three key points associated with the development of ML techniques: dataset quality, data preprocessing, and model evaluation. Results: 59 studies were included. The predominating models were Support Vector Machine (SVM) and Artificial Neural Networks (ANNs). In total, 31 articles diagnosed PD with a mean accuracy of 97.35 ± 3.46%. There was no standard cleaning protocol for EEG and a great heterogeneity in EEG characteristics was shown, although spectral features predominated by 88.37%. Conclusions: Neither the cleaning protocol nor the number of EEG channels influenced the classification results. A baseline value was provided for the PD diagnostic problem, although recent studies focus on the identification of cognitive impairment." @default.
- W4285011618 created "2022-07-12" @default.
- W4285011618 creator A5015013304 @default.
- W4285011618 creator A5062421156 @default.
- W4285011618 creator A5078963916 @default.
- W4285011618 date "2022-07-09" @default.
- W4285011618 modified "2023-10-07" @default.
- W4285011618 title "Survey of Machine Learning Techniques in the Analysis of EEG Signals for Parkinson’s Disease: A Systematic Review" @default.
- W4285011618 cites W1525254066 @default.
- W4285011618 cites W1971684996 @default.
- W4285011618 cites W2005445667 @default.
- W4285011618 cites W2006289388 @default.
- W4285011618 cites W2007634950 @default.
- W4285011618 cites W2020458109 @default.
- W4285011618 cites W2023507165 @default.
- W4285011618 cites W2041699232 @default.
- W4285011618 cites W2041935121 @default.
- W4285011618 cites W2047997064 @default.
- W4285011618 cites W2049304438 @default.
- W4285011618 cites W2073472728 @default.
- W4285011618 cites W2076361433 @default.
- W4285011618 cites W2079859083 @default.
- W4285011618 cites W2125193272 @default.
- W4285011618 cites W2501464909 @default.
- W4285011618 cites W2509382533 @default.
- W4285011618 cites W2533009743 @default.
- W4285011618 cites W2536880028 @default.
- W4285011618 cites W2559749850 @default.
- W4285011618 cites W2561149048 @default.
- W4285011618 cites W2581439063 @default.
- W4285011618 cites W2592929672 @default.
- W4285011618 cites W2594795755 @default.
- W4285011618 cites W2664267452 @default.
- W4285011618 cites W2737774955 @default.
- W4285011618 cites W2746099247 @default.
- W4285011618 cites W2767381938 @default.
- W4285011618 cites W2792182636 @default.
- W4285011618 cites W2792489592 @default.
- W4285011618 cites W2794627742 @default.
- W4285011618 cites W2889245000 @default.
- W4285011618 cites W2895530851 @default.
- W4285011618 cites W2896171079 @default.
- W4285011618 cites W2896943117 @default.
- W4285011618 cites W2899174506 @default.
- W4285011618 cites W2904559787 @default.
- W4285011618 cites W2907164414 @default.
- W4285011618 cites W2913887306 @default.
- W4285011618 cites W2919115771 @default.
- W4285011618 cites W2919415071 @default.
- W4285011618 cites W2954952848 @default.
- W4285011618 cites W2958750483 @default.
- W4285011618 cites W2962865354 @default.
- W4285011618 cites W2963355311 @default.
- W4285011618 cites W2966555083 @default.
- W4285011618 cites W2986393103 @default.
- W4285011618 cites W2991524019 @default.
- W4285011618 cites W2996150132 @default.
- W4285011618 cites W2997354535 @default.
- W4285011618 cites W3003948182 @default.
- W4285011618 cites W3006866383 @default.
- W4285011618 cites W3008027773 @default.
- W4285011618 cites W3012410088 @default.
- W4285011618 cites W3018485535 @default.
- W4285011618 cites W3037476094 @default.
- W4285011618 cites W3037893502 @default.
- W4285011618 cites W3042619474 @default.
- W4285011618 cites W3048522827 @default.
- W4285011618 cites W3048619979 @default.
- W4285011618 cites W3087891434 @default.
- W4285011618 cites W3098506483 @default.
- W4285011618 cites W3107699554 @default.
- W4285011618 cites W3113849654 @default.
- W4285011618 cites W3119589989 @default.
- W4285011618 cites W3124690167 @default.
- W4285011618 cites W3128274145 @default.
- W4285011618 cites W3130924396 @default.
- W4285011618 cites W3142043941 @default.
- W4285011618 cites W3163147779 @default.
- W4285011618 cites W3163434915 @default.
- W4285011618 cites W3165346851 @default.
- W4285011618 cites W3171669673 @default.
- W4285011618 cites W3177085298 @default.
- W4285011618 cites W3177910916 @default.
- W4285011618 cites W3185004711 @default.
- W4285011618 cites W3210985228 @default.
- W4285011618 cites W4200151804 @default.
- W4285011618 cites W4200237354 @default.
- W4285011618 cites W4200298460 @default.
- W4285011618 cites W4206497368 @default.
- W4285011618 cites W4211123396 @default.
- W4285011618 cites W4233583816 @default.
- W4285011618 cites W4251212826 @default.
- W4285011618 cites W4251353715 @default.
- W4285011618 cites W2313123848 @default.
- W4285011618 doi "https://doi.org/10.3390/app12146967" @default.
- W4285011618 hasPublicationYear "2022" @default.
- W4285011618 type Work @default.
- W4285011618 citedByCount "10" @default.