Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285011633> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4285011633 endingPage "703" @default.
- W4285011633 startingPage "699" @default.
- W4285011633 abstract "Regenerative MedicineVol. 17, No. 10 EditorialThere is more than one route to achieve myelin repairPeter Göttle, Thanos Tsigaras & Patrick KüryPeter Göttle https://orcid.org/0000-0001-6830-0956Department of Neurology and Neuroregeneration, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, GermanySearch for more papers by this author, Thanos TsigarasDepartment of Neurology and Neuroregeneration, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, GermanySearch for more papers by this author & Patrick Küry *Author for correspondence: Tel.: +49 211 8111 7822; E-mail Address: kuery@hhu.dehttps://orcid.org/0000-0002-2654-1126Department of Neurology and Neuroregeneration, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, GermanySearch for more papers by this authorPublished Online:11 Jul 2022https://doi.org/10.2217/rme-2022-0089AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInReddit View articleKeywords: multiple sclerosisneurodegenerationoligodendrocyteremyelinationsmall moleculestherapywhite matterReferences1. Kotter MR, Stadelmann C, Hartung HP. Enhancing remyelination in disease – can we wrap it up? Brain 134(Pt 7), 1882–1900 (2011).Crossref, Medline, Google Scholar2. De La Fuente AG, Queiroz RML, Ghosh T et al. Changes in the oligodendrocyte progenitor cell proteome with ageing. Mol. Cell. Proteomics 19(8), 1281–1302 (2020).Crossref, Medline, Google Scholar3. Kremer D, Aktas O, Hartung HP, Küry P. The complex world of oligodendroglial differentiation inhibitors. Ann. Neurol. 69(4), 602–618 (2011).Crossref, Medline, CAS, Google Scholar4. Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131(Pt 7), 1749–1758 (2008).Crossref, Medline, CAS, Google Scholar5. Balestri S, Del Giovane A, Sposato C, Ferrarelli M, Ragnini-Wilson A. The current challenges for drug discovery in CNS remyelination. Int. J. Mol. Sci. 22(6), 2891 (2021).Crossref, Medline, CAS, Google Scholar6. Manousi A, Küry P. Small molecule screening as an approach to encounter inefficient myelin repair. Curr. Opin. Pharmacol. 61, 127–135 (2021).Crossref, Medline, CAS, Google Scholar7. Buckley CE, Marguerie A, Roach AG et al. Drug reprofiling using zebrafish identifies novel compounds with potential pro-myelination effects. Neuropharmacology 59(3), 149–159 (2010).Crossref, Medline, CAS, Google Scholar8. Peppard JV, Rugg CA, Smicker MA et al. High-content phenotypic screening and triaging strategy to identify small molecules driving oligodendrocyte progenitor cell differentiation. J. Biomol. Screen. 20(3), 382–390 (2014).Crossref, Medline, Google Scholar9. Early JJ, Marshall-Phelps KLH, Williamson JM et al. An automated high-resolution in vivo screen in zebrafish to identify chemical regulators of myelination. Elife 7, e35136 (2018).Crossref, Medline, Google Scholar10. Lariosa-Willingham KD, Rosler ES, Tung JS, Dugas JC, Collins TL, Leonoudakis D. A high throughput drug screening assay to identify compounds that promote oligodendrocyte differentiation using acutely dissociated and purified oligodendrocyte precursor cells. BMC Res. Notes 9(1), 419 (2016).Crossref, Medline, Google Scholar11. Rosler ES, Lariosa-Willingham KD, Tung JS, Dugas JC, Collins TL, Leonoudakis D. Development of a high throughput drug screening assay to identify compounds that protect oligodendrocyte viability and differentiation under inflammatory conditions. BMC Res. Notes 9(1), 444 (2016).Crossref, Medline, Google Scholar12. Najm FJ, Madhavan M, Zaremba A et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature 522(7555), 216–220 (2015).Crossref, Medline, CAS, Google Scholar13. Mei F, Fancy SPJ, Shen Y-aA et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat. Med. 20(8), 954–960 (2014).Crossref, Medline, CAS, Google Scholar14. Deshmukh VA, Tardif V, Lyssiotis CA et al. A regenerative approach to the treatment of multiple sclerosis. Nature 502(7471), 327–332 (2013).Crossref, Medline, CAS, Google Scholar15. Manousi A, Göttle P, Reiche L et al. Identification of novel myelin repair drugs by modulation of oligodendroglial differentiation competence. EBioMedicine 65, 103276 (2021).Crossref, Medline, CAS, Google Scholar16. Chen Y, Zhen W, Guo T et al. Histamine receptor 3 negatively regulates oligodendrocyte differentiation and remyelination. PLoS One 12(12), e0189380 (2017).Crossref, Medline, Google Scholar17. Guo Y-E, Suo N, Cui X, Yuan Q, Xie X. Vitamin C promotes oligodendrocytes generation and remyelination. Glia 66(7), 1302–1316 (2018).Crossref, Medline, Google Scholar18. Cui X, Guo Y-E, Fang J-H et al. Donepezil, a drug for Alzheimer's disease, promotes oligodendrocyte generation and remyelination. Acta Pharmacol. Sin. 40(11), 1386–1393 (2019).Crossref, Medline, CAS, Google Scholar19. Joubert L, Foucault I, Sagot Y et al. Chemical inducers and transcriptional markers of oligodendrocyte differentiation. J. Neurosci. Res. 88(12), 2546–2557 (2010).Medline, CAS, Google Scholar20. Eleuteri C, Olla S, Veroni C et al. A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials. Sci. Rep. 7(1), 45780 (2017).Crossref, Medline, CAS, Google Scholar21. Preston MA, Finseth LT, Bourne JN, Macklin WB. A novel myelin protein zero transgenic zebrafish designed for rapid readout of in vivo myelination. Glia 67(4), 650–667 (2019).Crossref, Medline, Google Scholar22. Diamantopoulou E, Baxendale S, De La Vega De León A et al. Identification of compounds that rescue otic and myelination defects in the zebrafish adgrg6 (gpr126) mutant. Elife 8, e44889 (2019).Crossref, Medline, CAS, Google Scholar23. Parravicini C, Lecca D, Marangon D et al. Development of the first in vivo GPR17 ligand through an iterative drug discovery pipeline: a novel disease-modifying strategy for multiple sclerosis. PLoS One 15(4), e0231483 (2020).Crossref, Medline, CAS, Google Scholar24. Hubler Z, Allimuthu D, Bederman I et al. Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature 560(7718), 372–376 (2018).Crossref, Medline, CAS, Google Scholar25. Allimuthu D, Hubler Z, Najm FJ et al. Diverse chemical scaffolds enhance oligodendrocyte formation by inhibiting CYP51, TM7SF2, or EBP. Cell Chem. Biol. 26(4), 593–599.e4 (2019).Crossref, Medline, CAS, Google Scholar26. Suo N, Guo Y-E, He B, Gu H, Xie X. Inhibition of MAPK/ERK pathway promotes oligodendrocytes generation and recovery of demyelinating diseases. Glia 67(7), 1320–1332 (2019).Crossref, Medline, Google Scholar27. Zhu K, Sun J, Kang Z et al. Repurposing of omeprazole for oligodendrocyte differentiation and remyelination. Brain Res. 1710, 33–42 (2019).Crossref, Medline, CAS, Google Scholar28. Porcu G, Serone E, De Nardis V et al. Clobetasol and halcinonide act as smoothened agonists to promote myelin gene expression and RxRγ receptor activation. PLoS One 10(12), e0144550 (2015).Crossref, Medline, Google Scholar29. Elitt MS, Shick HE, Madhavan M et al. Chemical screening identifies enhancers of mutant oligodendrocyte survival and unmasks a distinct pathological phase in Pelizaeus–Merzbacher disease. Stem Cell Reports 11(3), 711–726 (2018).Crossref, Medline, CAS, Google Scholar30. Larocca JN, Almazan G. Acetylcholine agonists stimulate mitogen-activated protein kinase in oligodendrocyte progenitors by muscarinic receptors. J. Neurosci. Res. 50(5), 743–754 (1997).Crossref, Medline, CAS, Google Scholar31. Cui QL, Fogle E, Almazan G. Muscarinic acetylcholine receptors mediate oligodendrocyte progenitor survival through Src-like tyrosine kinases and PI3K/Akt pathways. Neurochem. Int. 48(5), 383–393 (2006).Crossref, Medline, CAS, Google Scholar32. De Angelis F, Bernardo A, Magnaghi V, Minghetti L, Tata AM. Muscarinic receptor subtypes as potential targets to modulate oligodendrocyte progenitor survival, proliferation, and differentiation. Dev. Neurobiol. 72(5), 713–728 (2012).Crossref, Medline, Google Scholar33. Cherchi F, Bulli I, Venturini M, Pugliese AM, Coppi E. Ion channels as new attractive targets to improve re-myelination processes in the brain. Int. J. Mol. Sci. 22(14), 7277 (2021).Crossref, Medline, CAS, Google Scholar34. Imamura O, Arai M, Dateki M et al. Nicotinic acetylcholine receptors mediate donepezil-induced oligodendrocyte differentiation. J. Neurochem. 135(6), 1086–1098 (2015).Crossref, Medline, CAS, Google Scholar35. Kremer D, Göttle P, Hartung HP, Küry P. Pushing forward: remyelination as the new frontier in CNS diseases. Trends Neurosci. 39(4), 246–263 (2016).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetails Vol. 17, No. 10 Follow us on social media for the latest updates Metrics Downloaded 52 times History Received 25 May 2022 Accepted 7 June 2022 Published online 11 July 2022 Published in print October 2022 Information© 2022 Future Medicine LtdKeywordsmultiple sclerosisneurodegenerationoligodendrocyteremyelinationsmall moleculestherapywhite matterFinancial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending or royalties.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W4285011633 created "2022-07-12" @default.
- W4285011633 creator A5054010363 @default.
- W4285011633 creator A5062004838 @default.
- W4285011633 creator A5077603725 @default.
- W4285011633 date "2022-10-01" @default.
- W4285011633 modified "2023-10-14" @default.
- W4285011633 title "There is more than one route to achieve myelin repair" @default.
- W4285011633 cites W1847510535 @default.
- W4285011633 cites W1964416005 @default.
- W4285011633 cites W1978117197 @default.
- W4285011633 cites W1998198360 @default.
- W4285011633 cites W2026301304 @default.
- W4285011633 cites W2056677926 @default.
- W4285011633 cites W2057992087 @default.
- W4285011633 cites W2062326815 @default.
- W4285011633 cites W2078482008 @default.
- W4285011633 cites W2079453546 @default.
- W4285011633 cites W2138699364 @default.
- W4285011633 cites W2147425081 @default.
- W4285011633 cites W2189933365 @default.
- W4285011633 cites W2295979384 @default.
- W4285011633 cites W2513719879 @default.
- W4285011633 cites W2520699098 @default.
- W4285011633 cites W2605046621 @default.
- W4285011633 cites W2776816334 @default.
- W4285011633 cites W2790854317 @default.
- W4285011633 cites W2827861258 @default.
- W4285011633 cites W2884521265 @default.
- W4285011633 cites W2888284272 @default.
- W4285011633 cites W2906424100 @default.
- W4285011633 cites W2910027678 @default.
- W4285011633 cites W2911728248 @default.
- W4285011633 cites W2919906631 @default.
- W4285011633 cites W2923992900 @default.
- W4285011633 cites W2950963604 @default.
- W4285011633 cites W3016728675 @default.
- W4285011633 cites W3027985786 @default.
- W4285011633 cites W3133723793 @default.
- W4285011633 cites W3138632103 @default.
- W4285011633 cites W3180628776 @default.
- W4285011633 cites W3212938786 @default.
- W4285011633 doi "https://doi.org/10.2217/rme-2022-0089" @default.
- W4285011633 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35815390" @default.
- W4285011633 hasPublicationYear "2022" @default.
- W4285011633 type Work @default.
- W4285011633 citedByCount "0" @default.
- W4285011633 crossrefType "journal-article" @default.
- W4285011633 hasAuthorship W4285011633A5054010363 @default.
- W4285011633 hasAuthorship W4285011633A5062004838 @default.
- W4285011633 hasAuthorship W4285011633A5077603725 @default.
- W4285011633 hasConcept C169760540 @default.
- W4285011633 hasConcept C2778609137 @default.
- W4285011633 hasConcept C41008148 @default.
- W4285011633 hasConcept C529278444 @default.
- W4285011633 hasConcept C86803240 @default.
- W4285011633 hasConceptScore W4285011633C169760540 @default.
- W4285011633 hasConceptScore W4285011633C2778609137 @default.
- W4285011633 hasConceptScore W4285011633C41008148 @default.
- W4285011633 hasConceptScore W4285011633C529278444 @default.
- W4285011633 hasConceptScore W4285011633C86803240 @default.
- W4285011633 hasIssue "10" @default.
- W4285011633 hasLocation W42850116331 @default.
- W4285011633 hasLocation W42850116332 @default.
- W4285011633 hasOpenAccess W4285011633 @default.
- W4285011633 hasPrimaryLocation W42850116331 @default.
- W4285011633 hasRelatedWork W1641042124 @default.
- W4285011633 hasRelatedWork W1990804418 @default.
- W4285011633 hasRelatedWork W1993764875 @default.
- W4285011633 hasRelatedWork W2013243191 @default.
- W4285011633 hasRelatedWork W2046158694 @default.
- W4285011633 hasRelatedWork W2046220474 @default.
- W4285011633 hasRelatedWork W2082860237 @default.
- W4285011633 hasRelatedWork W2130076355 @default.
- W4285011633 hasRelatedWork W2748952813 @default.
- W4285011633 hasRelatedWork W2899084033 @default.
- W4285011633 hasVolume "17" @default.
- W4285011633 isParatext "false" @default.
- W4285011633 isRetracted "false" @default.
- W4285011633 workType "article" @default.