Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285011696> ?p ?o ?g. }
- W4285011696 endingPage "e38039" @default.
- W4285011696 startingPage "e38039" @default.
- W4285011696 abstract "There is increasing interest in the use of artificial intelligence (AI) in pathology to increase accuracy and efficiency. To date, studies of clinicians' perceptions of AI have found only moderate acceptability, suggesting the need for further research regarding how to integrate it into clinical practice.The aim of the study was to determine contextual factors that may support or constrain the uptake of AI in pathology.To go beyond a simple listing of barriers and facilitators, we drew on the approach of realist evaluation and undertook a review of the literature to elicit stakeholders' theories of how, for whom, and in what circumstances AI can provide benefit in pathology. Searches were designed by an information specialist and peer-reviewed by a second information specialist. Searches were run on the arXiv.org repository, MEDLINE, and the Health Management Information Consortium, with additional searches undertaken on a range of websites to identify gray literature. In line with a realist approach, we also made use of relevant theory. Included documents were indexed in NVivo 12, using codes to capture different contexts, mechanisms, and outcomes that could affect the introduction of AI in pathology. Coded data were used to produce narrative summaries of each of the identified contexts, mechanisms, and outcomes, which were then translated into theories in the form of context-mechanism-outcome configurations.A total of 101 relevant documents were identified. Our analysis indicates that the benefits that can be achieved will vary according to the size and nature of the pathology department's workload and the extent to which pathologists work collaboratively; the major perceived benefit for specialist centers is in reducing workload. For uptake of AI, pathologists' trust is essential. Existing theories suggest that if pathologists are able to make sense of AI, engage in the adoption process, receive support in adapting their work processes, and can identify potential benefits to its introduction, it is more likely to be accepted.For uptake of AI in pathology, for all but the most simple quantitative tasks, measures will be required that either increase confidence in the system or provide users with an understanding of the performance of the system. For specialist centers, efforts should focus on reducing workload rather than increasing accuracy. Designers also need to give careful thought to usability and how AI is integrated into pathologists' workflow." @default.
- W4285011696 created "2022-07-12" @default.
- W4285011696 creator A5001235418 @default.
- W4285011696 creator A5009690901 @default.
- W4285011696 creator A5009745720 @default.
- W4285011696 creator A5048305243 @default.
- W4285011696 creator A5069554307 @default.
- W4285011696 date "2023-04-24" @default.
- W4285011696 modified "2023-09-25" @default.
- W4285011696 title "What Works Where and How for Uptake and Impact of Artificial Intelligence in Pathology: Review of Theories for a Realist Evaluation" @default.
- W4285011696 cites W1976773050 @default.
- W4285011696 cites W2085637447 @default.
- W4285011696 cites W2103243046 @default.
- W4285011696 cites W2120732572 @default.
- W4285011696 cites W2126407252 @default.
- W4285011696 cites W2136604958 @default.
- W4285011696 cites W2144185507 @default.
- W4285011696 cites W2149364707 @default.
- W4285011696 cites W2151608510 @default.
- W4285011696 cites W2153479102 @default.
- W4285011696 cites W2299177375 @default.
- W4285011696 cites W2463307264 @default.
- W4285011696 cites W2465788996 @default.
- W4285011696 cites W2470965540 @default.
- W4285011696 cites W2558050786 @default.
- W4285011696 cites W2607841056 @default.
- W4285011696 cites W2608976729 @default.
- W4285011696 cites W2609260042 @default.
- W4285011696 cites W2734839660 @default.
- W4285011696 cites W2751723768 @default.
- W4285011696 cites W2761432307 @default.
- W4285011696 cites W2768899399 @default.
- W4285011696 cites W2772723798 @default.
- W4285011696 cites W2786460468 @default.
- W4285011696 cites W2799930623 @default.
- W4285011696 cites W2801738822 @default.
- W4285011696 cites W2886153933 @default.
- W4285011696 cites W2895484887 @default.
- W4285011696 cites W2897312458 @default.
- W4285011696 cites W2899876413 @default.
- W4285011696 cites W2900654702 @default.
- W4285011696 cites W2901953250 @default.
- W4285011696 cites W2904221050 @default.
- W4285011696 cites W2906295032 @default.
- W4285011696 cites W2912250273 @default.
- W4285011696 cites W2912618182 @default.
- W4285011696 cites W2916559661 @default.
- W4285011696 cites W2918677731 @default.
- W4285011696 cites W2921675148 @default.
- W4285011696 cites W2924609556 @default.
- W4285011696 cites W2940900531 @default.
- W4285011696 cites W2943370629 @default.
- W4285011696 cites W2945500496 @default.
- W4285011696 cites W2946147212 @default.
- W4285011696 cites W2947151330 @default.
- W4285011696 cites W2947683811 @default.
- W4285011696 cites W2951078712 @default.
- W4285011696 cites W2953048903 @default.
- W4285011696 cites W2953914369 @default.
- W4285011696 cites W2954646778 @default.
- W4285011696 cites W2956228567 @default.
- W4285011696 cites W2964756323 @default.
- W4285011696 cites W2967444033 @default.
- W4285011696 cites W2997048718 @default.
- W4285011696 cites W3005455314 @default.
- W4285011696 cites W3035281511 @default.
- W4285011696 cites W3037405958 @default.
- W4285011696 cites W3096639188 @default.
- W4285011696 cites W3110827841 @default.
- W4285011696 cites W3127157950 @default.
- W4285011696 cites W3170940710 @default.
- W4285011696 cites W3173393692 @default.
- W4285011696 cites W3194472989 @default.
- W4285011696 cites W3202023533 @default.
- W4285011696 cites W3205551384 @default.
- W4285011696 cites W3209901185 @default.
- W4285011696 cites W4206636637 @default.
- W4285011696 cites W4235810741 @default.
- W4285011696 doi "https://doi.org/10.2196/38039" @default.
- W4285011696 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37093631" @default.
- W4285011696 hasPublicationYear "2023" @default.
- W4285011696 type Work @default.
- W4285011696 citedByCount "1" @default.
- W4285011696 countsByYear W42850116962022 @default.
- W4285011696 crossrefType "journal-article" @default.
- W4285011696 hasAuthorship W4285011696A5001235418 @default.
- W4285011696 hasAuthorship W4285011696A5009690901 @default.
- W4285011696 hasAuthorship W4285011696A5009745720 @default.
- W4285011696 hasAuthorship W4285011696A5048305243 @default.
- W4285011696 hasAuthorship W4285011696A5069554307 @default.
- W4285011696 hasBestOaLocation W42850116961 @default.
- W4285011696 hasConcept C111919701 @default.
- W4285011696 hasConcept C138885662 @default.
- W4285011696 hasConcept C151730666 @default.
- W4285011696 hasConcept C15744967 @default.
- W4285011696 hasConcept C17744445 @default.
- W4285011696 hasConcept C199033989 @default.
- W4285011696 hasConcept C199539241 @default.