Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285012308> ?p ?o ?g. }
- W4285012308 endingPage "118" @default.
- W4285012308 startingPage "107" @default.
- W4285012308 abstract "<p indent=0mm>With the rapid development of deep neural networks and their derived algorithms, artificial intelligence (AI) has flourished in various fields in recent years. In the field of computer-aided synthetic route design, artificial intelligence algorithms such as generative adversarial networks and variational autoencoders have performed very well. How to deal with the geometric representation of molecules is a key step in transforming chemical problems into algorithmic problems. Starting from different dimensions, this paper systematically summarizes the application of various molecular sequence models, graph theory and other representation methods in AI-assisted synthesis chemistry, and discusses the shortcomings and challenges of current molecular representation." @default.
- W4285012308 created "2022-07-12" @default.
- W4285012308 creator A5007517470 @default.
- W4285012308 creator A5031992459 @default.
- W4285012308 creator A5035944985 @default.
- W4285012308 creator A5036771762 @default.
- W4285012308 creator A5080964989 @default.
- W4285012308 creator A5090226123 @default.
- W4285012308 date "2022-12-19" @default.
- W4285012308 modified "2023-09-25" @default.
- W4285012308 title "Molecular represention in AI-assisted synthesis chemistry: from sequence to graph" @default.
- W4285012308 cites W1975147762 @default.
- W4285012308 cites W1988037271 @default.
- W4285012308 cites W2044834685 @default.
- W4285012308 cites W2064675550 @default.
- W4285012308 cites W2069143585 @default.
- W4285012308 cites W2086757166 @default.
- W4285012308 cites W2087563523 @default.
- W4285012308 cites W2091563009 @default.
- W4285012308 cites W2315074804 @default.
- W4285012308 cites W2558460151 @default.
- W4285012308 cites W2610148085 @default.
- W4285012308 cites W2621742623 @default.
- W4285012308 cites W2739455021 @default.
- W4285012308 cites W2747592475 @default.
- W4285012308 cites W2765224015 @default.
- W4285012308 cites W2769423117 @default.
- W4285012308 cites W2778051509 @default.
- W4285012308 cites W2784270883 @default.
- W4285012308 cites W2899838818 @default.
- W4285012308 cites W2903262661 @default.
- W4285012308 cites W2950708653 @default.
- W4285012308 cites W2953169496 @default.
- W4285012308 cites W2957050889 @default.
- W4285012308 cites W2966357564 @default.
- W4285012308 cites W2989615256 @default.
- W4285012308 cites W2994678679 @default.
- W4285012308 cites W2998722865 @default.
- W4285012308 cites W2999044305 @default.
- W4285012308 cites W2999242200 @default.
- W4285012308 cites W3005769002 @default.
- W4285012308 cites W3007743886 @default.
- W4285012308 cites W3007750971 @default.
- W4285012308 cites W3009202547 @default.
- W4285012308 cites W3010145447 @default.
- W4285012308 cites W3036931110 @default.
- W4285012308 cites W3045928028 @default.
- W4285012308 cites W3073217148 @default.
- W4285012308 cites W3092454864 @default.
- W4285012308 cites W3093036756 @default.
- W4285012308 cites W3093687066 @default.
- W4285012308 cites W3098269892 @default.
- W4285012308 cites W3100751385 @default.
- W4285012308 cites W3103092523 @default.
- W4285012308 cites W3119872582 @default.
- W4285012308 cites W3123901912 @default.
- W4285012308 cites W3135156311 @default.
- W4285012308 cites W3138150573 @default.
- W4285012308 cites W3146384714 @default.
- W4285012308 cites W3151914700 @default.
- W4285012308 cites W3152893301 @default.
- W4285012308 cites W3160706794 @default.
- W4285012308 cites W3183967699 @default.
- W4285012308 cites W3186179742 @default.
- W4285012308 cites W3208624098 @default.
- W4285012308 cites W4200297659 @default.
- W4285012308 cites W4213077304 @default.
- W4285012308 cites W4300402905 @default.
- W4285012308 doi "https://doi.org/10.1360/ssc-2022-0113" @default.
- W4285012308 hasPublicationYear "2022" @default.
- W4285012308 type Work @default.
- W4285012308 citedByCount "0" @default.
- W4285012308 crossrefType "journal-article" @default.
- W4285012308 hasAuthorship W4285012308A5007517470 @default.
- W4285012308 hasAuthorship W4285012308A5031992459 @default.
- W4285012308 hasAuthorship W4285012308A5035944985 @default.
- W4285012308 hasAuthorship W4285012308A5036771762 @default.
- W4285012308 hasAuthorship W4285012308A5080964989 @default.
- W4285012308 hasAuthorship W4285012308A5090226123 @default.
- W4285012308 hasConcept C185592680 @default.
- W4285012308 hasConcept C2778112365 @default.
- W4285012308 hasConcept C41008148 @default.
- W4285012308 hasConcept C55493867 @default.
- W4285012308 hasConcept C70721500 @default.
- W4285012308 hasConcept C86803240 @default.
- W4285012308 hasConceptScore W4285012308C185592680 @default.
- W4285012308 hasConceptScore W4285012308C2778112365 @default.
- W4285012308 hasConceptScore W4285012308C41008148 @default.
- W4285012308 hasConceptScore W4285012308C55493867 @default.
- W4285012308 hasConceptScore W4285012308C70721500 @default.
- W4285012308 hasConceptScore W4285012308C86803240 @default.
- W4285012308 hasIssue "1" @default.
- W4285012308 hasLocation W42850123081 @default.
- W4285012308 hasOpenAccess W4285012308 @default.
- W4285012308 hasPrimaryLocation W42850123081 @default.
- W4285012308 hasRelatedWork W1770217717 @default.
- W4285012308 hasRelatedWork W1992065723 @default.
- W4285012308 hasRelatedWork W2011753019 @default.