Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285013362> ?p ?o ?g. }
- W4285013362 endingPage "110919" @default.
- W4285013362 startingPage "110919" @default.
- W4285013362 abstract "Finding actionable trends in laser-based metal additive manufacturing process monitoring data is challenging owing to the diversity and complexity of the underlying physical interactions. A single monitoring solution that captures a particular process phenomenon, such as a photodiode that tracks melt pool intensity, is not alone capable of evaluating process stability or detecting flaw formation with sufficient precision for routine application in industry. In this work, to improve flaw detection performance, we adopted a data fusion approach that captures multiple process phenomena. To demonstrate this, we acquired data from laser powder bed fusion (LPBF) builds of cylindrical specimens produced with different laser spot sizes, emulating defocusing due to process faults such as thermal lensing. The resulting specimens had porosity of varying types and severity, quantified by post-build non-destructive X-ray computed tomography, Archimedes density measurements, and destructive metallographic characterization. During the build, the melt pool state was monitored with two coaxial high-speed video cameras and a temperature field imaging system. Physically intuitive low-level melt pool signatures, such as melt pool temperature, shape and size, and spatter intensity were extracted from this high-dimensional, image-based sensor data. These process signatures were subsequently used as input features in relatively simple machine learning models, such as a support vector machine, which were trained to detect laser defocusing, and in addition, predict porosity type and severity. The results show that the data fusion approach significantly enhanced system performance by reducing the overall false positive rate from ∼ 0.1 to ∼ 0.001 without sacrificing the true positive rate (∼0.90). These results were at par with a black-box, deep machine learning approach (convolutional neural network)." @default.
- W4285013362 created "2022-07-12" @default.
- W4285013362 creator A5007248028 @default.
- W4285013362 creator A5009553994 @default.
- W4285013362 creator A5015672774 @default.
- W4285013362 creator A5030503844 @default.
- W4285013362 creator A5034684339 @default.
- W4285013362 creator A5045182089 @default.
- W4285013362 creator A5063617342 @default.
- W4285013362 date "2022-09-01" @default.
- W4285013362 modified "2023-10-17" @default.
- W4285013362 title "Multi phenomena melt pool sensor data fusion for enhanced process monitoring of laser powder bed fusion additive manufacturing" @default.
- W4285013362 cites W1159302035 @default.
- W4285013362 cites W1964940342 @default.
- W4285013362 cites W1977177161 @default.
- W4285013362 cites W1990077866 @default.
- W4285013362 cites W2015954192 @default.
- W4285013362 cites W2027137968 @default.
- W4285013362 cites W2035742184 @default.
- W4285013362 cites W2148430292 @default.
- W4285013362 cites W2188299272 @default.
- W4285013362 cites W2210796340 @default.
- W4285013362 cites W2216946510 @default.
- W4285013362 cites W2250894080 @default.
- W4285013362 cites W2272112894 @default.
- W4285013362 cites W2279780730 @default.
- W4285013362 cites W2311258216 @default.
- W4285013362 cites W2324464036 @default.
- W4285013362 cites W2333204874 @default.
- W4285013362 cites W2404524956 @default.
- W4285013362 cites W2515744457 @default.
- W4285013362 cites W2518866101 @default.
- W4285013362 cites W2532053579 @default.
- W4285013362 cites W2563012899 @default.
- W4285013362 cites W2584508145 @default.
- W4285013362 cites W2586297576 @default.
- W4285013362 cites W2588134529 @default.
- W4285013362 cites W2741933589 @default.
- W4285013362 cites W2762367303 @default.
- W4285013362 cites W2802356916 @default.
- W4285013362 cites W2884691768 @default.
- W4285013362 cites W2891043551 @default.
- W4285013362 cites W2901247409 @default.
- W4285013362 cites W2915627018 @default.
- W4285013362 cites W2917573274 @default.
- W4285013362 cites W2925000736 @default.
- W4285013362 cites W2937164061 @default.
- W4285013362 cites W2969625314 @default.
- W4285013362 cites W2979798188 @default.
- W4285013362 cites W2991910174 @default.
- W4285013362 cites W3003630384 @default.
- W4285013362 cites W3010598178 @default.
- W4285013362 cites W3015276433 @default.
- W4285013362 cites W3016989108 @default.
- W4285013362 cites W3022413870 @default.
- W4285013362 cites W3023745505 @default.
- W4285013362 cites W3029656713 @default.
- W4285013362 cites W3107590942 @default.
- W4285013362 cites W3112327733 @default.
- W4285013362 cites W3124440058 @default.
- W4285013362 cites W3126769568 @default.
- W4285013362 cites W3143338927 @default.
- W4285013362 cites W3158938058 @default.
- W4285013362 cites W3172166634 @default.
- W4285013362 cites W3193420843 @default.
- W4285013362 cites W3202767637 @default.
- W4285013362 cites W3206532094 @default.
- W4285013362 cites W4206945023 @default.
- W4285013362 cites W4214817820 @default.
- W4285013362 cites W4220661532 @default.
- W4285013362 cites W4249271370 @default.
- W4285013362 cites W587588427 @default.
- W4285013362 cites W3092987321 @default.
- W4285013362 doi "https://doi.org/10.1016/j.matdes.2022.110919" @default.
- W4285013362 hasPublicationYear "2022" @default.
- W4285013362 type Work @default.
- W4285013362 citedByCount "12" @default.
- W4285013362 countsByYear W42850133622023 @default.
- W4285013362 crossrefType "journal-article" @default.
- W4285013362 hasAuthorship W4285013362A5007248028 @default.
- W4285013362 hasAuthorship W4285013362A5009553994 @default.
- W4285013362 hasAuthorship W4285013362A5015672774 @default.
- W4285013362 hasAuthorship W4285013362A5030503844 @default.
- W4285013362 hasAuthorship W4285013362A5034684339 @default.
- W4285013362 hasAuthorship W4285013362A5045182089 @default.
- W4285013362 hasAuthorship W4285013362A5063617342 @default.
- W4285013362 hasConcept C111919701 @default.
- W4285013362 hasConcept C120665830 @default.
- W4285013362 hasConcept C121332964 @default.
- W4285013362 hasConcept C127413603 @default.
- W4285013362 hasConcept C138885662 @default.
- W4285013362 hasConcept C154945302 @default.
- W4285013362 hasConcept C158525013 @default.
- W4285013362 hasConcept C159985019 @default.
- W4285013362 hasConcept C192562407 @default.
- W4285013362 hasConcept C33954974 @default.
- W4285013362 hasConcept C41008148 @default.
- W4285013362 hasConcept C41895202 @default.