Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285014535> ?p ?o ?g. }
- W4285014535 endingPage "417" @default.
- W4285014535 startingPage "397" @default.
- W4285014535 abstract "Basic equations of electromagnetic are Maxwell equations. In this manuscript, ADI-IRBF-GMLS is employed for solving the time-dependent Maxwell equations in two-dimension. For approximating the time variable, we utilize alternative direction implicit (ADI) method and integrated radial basis function based on generalized moving least squares (IRBF-GMLS) method is used for space direction. Alternative Direct Implicit (ADI) technique includes two steps in each time stage, that their computations are simple. We have to increase the number of collocation points and also time steps to reach the final time. This procedure increases the used execution time. To overcome this issue, we employ the proper orthogonal decomposition (POD) method to reduce the size of the final algebraic system of equations. This numerical procedure can be called ADI-IRBF-GMLS-POD method. Numerical results are presented and they illustrate the accuracy and efficiency of the proposed method. The point to note is that the used time-discrete scheme i.e. ADI approach cannot be employed in the numerical simulations on non-rectangular computational domains for solving Maxwell equations. This is the main issue in this numerical approach for Maxwell equations. We also compare the ADI-IRBF-GMLS with POD with full model of presented method applied to solve Maxwell equations." @default.
- W4285014535 created "2022-07-12" @default.
- W4285014535 creator A5041234441 @default.
- W4285014535 creator A5044309986 @default.
- W4285014535 creator A5051159072 @default.
- W4285014535 date "2022-10-01" @default.
- W4285014535 modified "2023-09-23" @default.
- W4285014535 title "Simulation of Maxwell equation based on an ADI approach and integrated radial basis function-generalized moving least squares (IRBF-GMLS) method with reduced order algorithm based on proper orthogonal decomposition" @default.
- W4285014535 cites W1259147758 @default.
- W4285014535 cites W1549023103 @default.
- W4285014535 cites W1623557273 @default.
- W4285014535 cites W1965231199 @default.
- W4285014535 cites W1968779197 @default.
- W4285014535 cites W1976893894 @default.
- W4285014535 cites W1984612361 @default.
- W4285014535 cites W1988744163 @default.
- W4285014535 cites W2012876210 @default.
- W4285014535 cites W2023695928 @default.
- W4285014535 cites W2024089310 @default.
- W4285014535 cites W2026656818 @default.
- W4285014535 cites W2035864602 @default.
- W4285014535 cites W2047591100 @default.
- W4285014535 cites W2059521275 @default.
- W4285014535 cites W2065860321 @default.
- W4285014535 cites W2067260085 @default.
- W4285014535 cites W2069346338 @default.
- W4285014535 cites W2071032561 @default.
- W4285014535 cites W2074150787 @default.
- W4285014535 cites W2078861811 @default.
- W4285014535 cites W2082508631 @default.
- W4285014535 cites W2084216718 @default.
- W4285014535 cites W2088080615 @default.
- W4285014535 cites W2095036901 @default.
- W4285014535 cites W2095534363 @default.
- W4285014535 cites W2108108392 @default.
- W4285014535 cites W2112823474 @default.
- W4285014535 cites W2118157144 @default.
- W4285014535 cites W2120101088 @default.
- W4285014535 cites W2126492868 @default.
- W4285014535 cites W2135966580 @default.
- W4285014535 cites W2142063750 @default.
- W4285014535 cites W2146947482 @default.
- W4285014535 cites W2147169375 @default.
- W4285014535 cites W2152727585 @default.
- W4285014535 cites W2158024212 @default.
- W4285014535 cites W2181343653 @default.
- W4285014535 cites W2234761409 @default.
- W4285014535 cites W2342915373 @default.
- W4285014535 cites W2415942730 @default.
- W4285014535 cites W2591671800 @default.
- W4285014535 cites W2600143973 @default.
- W4285014535 cites W2611363983 @default.
- W4285014535 cites W2751987614 @default.
- W4285014535 cites W2771374894 @default.
- W4285014535 cites W2947802724 @default.
- W4285014535 cites W2967670660 @default.
- W4285014535 cites W3008338007 @default.
- W4285014535 cites W3028748194 @default.
- W4285014535 cites W3047033524 @default.
- W4285014535 cites W310687353 @default.
- W4285014535 cites W3199752695 @default.
- W4285014535 cites W4205142804 @default.
- W4285014535 cites W4206954592 @default.
- W4285014535 doi "https://doi.org/10.1016/j.enganabound.2022.06.020" @default.
- W4285014535 hasPublicationYear "2022" @default.
- W4285014535 type Work @default.
- W4285014535 citedByCount "4" @default.
- W4285014535 countsByYear W42850145352023 @default.
- W4285014535 crossrefType "journal-article" @default.
- W4285014535 hasAuthorship W4285014535A5041234441 @default.
- W4285014535 hasAuthorship W4285014535A5044309986 @default.
- W4285014535 hasAuthorship W4285014535A5051159072 @default.
- W4285014535 hasConcept C11413529 @default.
- W4285014535 hasConcept C119857082 @default.
- W4285014535 hasConcept C121332964 @default.
- W4285014535 hasConcept C12426560 @default.
- W4285014535 hasConcept C134306372 @default.
- W4285014535 hasConcept C14036430 @default.
- W4285014535 hasConcept C142363948 @default.
- W4285014535 hasConcept C158622935 @default.
- W4285014535 hasConcept C205951836 @default.
- W4285014535 hasConcept C2126413 @default.
- W4285014535 hasConcept C23917780 @default.
- W4285014535 hasConcept C2524010 @default.
- W4285014535 hasConcept C2780580100 @default.
- W4285014535 hasConcept C28826006 @default.
- W4285014535 hasConcept C33923547 @default.
- W4285014535 hasConcept C41008148 @default.
- W4285014535 hasConcept C45374587 @default.
- W4285014535 hasConcept C51544822 @default.
- W4285014535 hasConcept C5917680 @default.
- W4285014535 hasConcept C59282198 @default.
- W4285014535 hasConcept C62520636 @default.
- W4285014535 hasConcept C78045399 @default.
- W4285014535 hasConcept C78458016 @default.
- W4285014535 hasConcept C80023036 @default.
- W4285014535 hasConcept C86803240 @default.
- W4285014535 hasConceptScore W4285014535C11413529 @default.