Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285014588> ?p ?o ?g. }
- W4285014588 endingPage "118121" @default.
- W4285014588 startingPage "118121" @default.
- W4285014588 abstract "EEG-based brain computer interface has been demonstrated to be an effective tool for brain state and driving behavior detection to understand the human factors during driving. By providing a driving assistance operation consistent with the driver’s action intention, it can improve the interaction process between driving system and its driver. Driving is a comprehensive process that requires the coordination of different brain regions. Functional connectivity, especially the dynamic connectivities calculated by statistical interdependencies between neural oscillations within these brain regions, which can provide some specific information for driving behavior. We developed a novel multi-layer brain network model for steering action to improve the understanding of dynamic characteristics during driving. Firstly, a simulated driving experiment is designed and participants were required to drive along a specified route to complete the left turn, right turn and straight action when arriving at an intersection, and electroencephalographic (EEG) signals were recorded simultaneously using a 32-channel system. Then, a multi-layer network framework which combined with an oscillatory envelope based functional connectivity metrics was designed to present the dynamic process of the driving. The result shows there exist significant difference in the multi-layer network structure among the three steering conditions, especially between steering and straight moving. The corresponding parameter analysis also found the significant difference of multilayer modularity (Q-value) and multiplex participation coefficient (MPC) value among the three conditions. Further analysis about single network found the averaged degree, global efficiency, and clustering coefficient also shows significant difference between straight moving and steering action. We conclude that the multi-layer network model can more truly present the dynamic process during driving and provide more accurate information from spatial domain. Besides, the MPC and Q-Value are two new network markers can be used for the recognition of expected steering action, while the average value of corresponding super-matrix can also be used for straight driving and steering action recognition. The results demonstrate the feasibility of multilayer dynamic brain networks in driving behavior recognition, provided a new insight for the EEG based driving behavior recognition." @default.
- W4285014588 created "2022-07-12" @default.
- W4285014588 creator A5013462710 @default.
- W4285014588 creator A5016026582 @default.
- W4285014588 creator A5020086138 @default.
- W4285014588 creator A5047796357 @default.
- W4285014588 creator A5064238252 @default.
- W4285014588 creator A5072543569 @default.
- W4285014588 creator A5074355312 @default.
- W4285014588 date "2022-11-01" @default.
- W4285014588 modified "2023-09-27" @default.
- W4285014588 title "Driving EEG based multilayer dynamic brain network analysis for steering process" @default.
- W4285014588 cites W1853719905 @default.
- W4285014588 cites W1974554864 @default.
- W4285014588 cites W2024036446 @default.
- W4285014588 cites W2024503126 @default.
- W4285014588 cites W2032951987 @default.
- W4285014588 cites W2054454587 @default.
- W4285014588 cites W2074617510 @default.
- W4285014588 cites W2084769986 @default.
- W4285014588 cites W2086243891 @default.
- W4285014588 cites W2091031497 @default.
- W4285014588 cites W2103152221 @default.
- W4285014588 cites W2103609813 @default.
- W4285014588 cites W2133800624 @default.
- W4285014588 cites W2167822639 @default.
- W4285014588 cites W2179967428 @default.
- W4285014588 cites W2284925975 @default.
- W4285014588 cites W250399489 @default.
- W4285014588 cites W2505822514 @default.
- W4285014588 cites W2527502902 @default.
- W4285014588 cites W2563279629 @default.
- W4285014588 cites W2565496127 @default.
- W4285014588 cites W2583273159 @default.
- W4285014588 cites W2753691346 @default.
- W4285014588 cites W2764285534 @default.
- W4285014588 cites W2767714060 @default.
- W4285014588 cites W2794940030 @default.
- W4285014588 cites W2891385574 @default.
- W4285014588 cites W2903815187 @default.
- W4285014588 cites W2905348728 @default.
- W4285014588 cites W2910008658 @default.
- W4285014588 cites W2913599574 @default.
- W4285014588 cites W2934625602 @default.
- W4285014588 cites W2954650679 @default.
- W4285014588 cites W2972485191 @default.
- W4285014588 cites W3017161802 @default.
- W4285014588 cites W3025544846 @default.
- W4285014588 cites W3081155232 @default.
- W4285014588 cites W3103589660 @default.
- W4285014588 cites W3139186846 @default.
- W4285014588 cites W3169328312 @default.
- W4285014588 cites W3214902398 @default.
- W4285014588 cites W3215241511 @default.
- W4285014588 cites W4206040884 @default.
- W4285014588 cites W4241298616 @default.
- W4285014588 doi "https://doi.org/10.1016/j.eswa.2022.118121" @default.
- W4285014588 hasPublicationYear "2022" @default.
- W4285014588 type Work @default.
- W4285014588 citedByCount "1" @default.
- W4285014588 countsByYear W42850145882023 @default.
- W4285014588 crossrefType "journal-article" @default.
- W4285014588 hasAuthorship W4285014588A5013462710 @default.
- W4285014588 hasAuthorship W4285014588A5016026582 @default.
- W4285014588 hasAuthorship W4285014588A5020086138 @default.
- W4285014588 hasAuthorship W4285014588A5047796357 @default.
- W4285014588 hasAuthorship W4285014588A5064238252 @default.
- W4285014588 hasAuthorship W4285014588A5072543569 @default.
- W4285014588 hasAuthorship W4285014588A5074355312 @default.
- W4285014588 hasConcept C111919701 @default.
- W4285014588 hasConcept C121332964 @default.
- W4285014588 hasConcept C154945302 @default.
- W4285014588 hasConcept C169760540 @default.
- W4285014588 hasConcept C173201364 @default.
- W4285014588 hasConcept C2779478453 @default.
- W4285014588 hasConcept C2780689630 @default.
- W4285014588 hasConcept C2780791683 @default.
- W4285014588 hasConcept C41008148 @default.
- W4285014588 hasConcept C44154836 @default.
- W4285014588 hasConcept C50644808 @default.
- W4285014588 hasConcept C522805319 @default.
- W4285014588 hasConcept C54355233 @default.
- W4285014588 hasConcept C62520636 @default.
- W4285014588 hasConcept C86803240 @default.
- W4285014588 hasConcept C98045186 @default.
- W4285014588 hasConceptScore W4285014588C111919701 @default.
- W4285014588 hasConceptScore W4285014588C121332964 @default.
- W4285014588 hasConceptScore W4285014588C154945302 @default.
- W4285014588 hasConceptScore W4285014588C169760540 @default.
- W4285014588 hasConceptScore W4285014588C173201364 @default.
- W4285014588 hasConceptScore W4285014588C2779478453 @default.
- W4285014588 hasConceptScore W4285014588C2780689630 @default.
- W4285014588 hasConceptScore W4285014588C2780791683 @default.
- W4285014588 hasConceptScore W4285014588C41008148 @default.
- W4285014588 hasConceptScore W4285014588C44154836 @default.
- W4285014588 hasConceptScore W4285014588C50644808 @default.
- W4285014588 hasConceptScore W4285014588C522805319 @default.
- W4285014588 hasConceptScore W4285014588C54355233 @default.