Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285014966> ?p ?o ?g. }
- W4285014966 endingPage "2513.e4" @default.
- W4285014966 startingPage "2505" @default.
- W4285014966 abstract "Background & AimsArtificial Intelligence (AI) could support cost-saving strategies for colonoscopy because of its accuracy in the optical diagnosis of colorectal polyps. However, AI must meet predefined criteria to be implemented in clinical settings.MethodsAn approved computer-aided diagnosis (CADx) module for differentiating between adenoma and nonadenoma in unmagnified white-light colonoscopy was used in a consecutive series of colonoscopies. For each polyp, CADx output and subsequent endoscopist diagnosis with advanced imaging were matched against the histology gold standard. The primary outcome was the negative predictive value (NPV) of CADx for adenomatous histology for ≤5-mm rectosigmoid lesions. We also calculated the NPV for AI-assisted endoscopist predictions, and agreement between CADx and histology-based postpolypectomy surveillance intervals according to European and American guidelines.ResultsOverall, 544 polyps were removed in 162 patients, of which 295 (54.2%) were ≤5-mm rectosigmoid histologically verified lesions. CADx diagnosis was feasible in 291 of 295 (98.6%), and the NPV for ≤5-mm rectosigmoid lesions was 97.6% (95% CI, 94.1%–99.1%). There were 242 of 295 (82%) lesions that were amenable for a leave-in-situ strategy. Based on CADx output, 212 of 544 (39%) would be amenable to a resect-and-discard strategy, resulting in a 95.6% (95% CI, 90.8%–98.0%) and 95.9% (95% CI, 89.8%–98.4%) agreement between CADx- and histology-based surveillance intervals according to European and American guidelines, respectively. A similar NPV (97.6%; 95% CI, 94.8%–99.1%) for ≤5-mm rectosigmoids was achieved by AI-assisted endoscopists assessing polyps with electronic chromoendoscopy, with a CADx-concordant diagnosis in 97.2% of cases.ConclusionsIn this study, CADx without advanced imaging exceeded the benchmarks required for optical diagnosis of colorectal polyps. CADx could help implement cost-saving strategies in colonoscopy by reducing the burden of polypectomy and/or pathology. Clinicaltrials.gov registration number: NCT04884581. Artificial Intelligence (AI) could support cost-saving strategies for colonoscopy because of its accuracy in the optical diagnosis of colorectal polyps. However, AI must meet predefined criteria to be implemented in clinical settings. An approved computer-aided diagnosis (CADx) module for differentiating between adenoma and nonadenoma in unmagnified white-light colonoscopy was used in a consecutive series of colonoscopies. For each polyp, CADx output and subsequent endoscopist diagnosis with advanced imaging were matched against the histology gold standard. The primary outcome was the negative predictive value (NPV) of CADx for adenomatous histology for ≤5-mm rectosigmoid lesions. We also calculated the NPV for AI-assisted endoscopist predictions, and agreement between CADx and histology-based postpolypectomy surveillance intervals according to European and American guidelines. Overall, 544 polyps were removed in 162 patients, of which 295 (54.2%) were ≤5-mm rectosigmoid histologically verified lesions. CADx diagnosis was feasible in 291 of 295 (98.6%), and the NPV for ≤5-mm rectosigmoid lesions was 97.6% (95% CI, 94.1%–99.1%). There were 242 of 295 (82%) lesions that were amenable for a leave-in-situ strategy. Based on CADx output, 212 of 544 (39%) would be amenable to a resect-and-discard strategy, resulting in a 95.6% (95% CI, 90.8%–98.0%) and 95.9% (95% CI, 89.8%–98.4%) agreement between CADx- and histology-based surveillance intervals according to European and American guidelines, respectively. A similar NPV (97.6%; 95% CI, 94.8%–99.1%) for ≤5-mm rectosigmoids was achieved by AI-assisted endoscopists assessing polyps with electronic chromoendoscopy, with a CADx-concordant diagnosis in 97.2% of cases. In this study, CADx without advanced imaging exceeded the benchmarks required for optical diagnosis of colorectal polyps. CADx could help implement cost-saving strategies in colonoscopy by reducing the burden of polypectomy and/or pathology. Clinicaltrials.gov registration number: NCT04884581." @default.
- W4285014966 created "2022-07-12" @default.
- W4285014966 creator A5010158984 @default.
- W4285014966 creator A5013005859 @default.
- W4285014966 creator A5031706329 @default.
- W4285014966 creator A5062205577 @default.
- W4285014966 creator A5087518402 @default.
- W4285014966 date "2022-11-01" @default.
- W4285014966 modified "2023-10-18" @default.
- W4285014966 title "Artificial Intelligence Allows Leaving-In-Situ Colorectal Polyps" @default.
- W4285014966 cites W1543003821 @default.
- W4285014966 cites W1971742374 @default.
- W4285014966 cites W1995455630 @default.
- W4285014966 cites W2018449686 @default.
- W4285014966 cites W2019397787 @default.
- W4285014966 cites W2032406579 @default.
- W4285014966 cites W2075246611 @default.
- W4285014966 cites W2088812218 @default.
- W4285014966 cites W2097688201 @default.
- W4285014966 cites W2151439603 @default.
- W4285014966 cites W2165188436 @default.
- W4285014966 cites W2338997131 @default.
- W4285014966 cites W2479589639 @default.
- W4285014966 cites W2510086083 @default.
- W4285014966 cites W2764295328 @default.
- W4285014966 cites W2765527079 @default.
- W4285014966 cites W2887719255 @default.
- W4285014966 cites W2892661394 @default.
- W4285014966 cites W2981035911 @default.
- W4285014966 cites W3005792626 @default.
- W4285014966 cites W3006619456 @default.
- W4285014966 cites W3013146603 @default.
- W4285014966 cites W3020992444 @default.
- W4285014966 cites W3021812344 @default.
- W4285014966 cites W3036665420 @default.
- W4285014966 cites W3037959220 @default.
- W4285014966 cites W3083020872 @default.
- W4285014966 cites W3083992516 @default.
- W4285014966 cites W3150301399 @default.
- W4285014966 cites W3158874721 @default.
- W4285014966 cites W3174585210 @default.
- W4285014966 cites W4230531790 @default.
- W4285014966 doi "https://doi.org/10.1016/j.cgh.2022.04.045" @default.
- W4285014966 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35835342" @default.
- W4285014966 hasPublicationYear "2022" @default.
- W4285014966 type Work @default.
- W4285014966 citedByCount "27" @default.
- W4285014966 countsByYear W42850149662022 @default.
- W4285014966 countsByYear W42850149662023 @default.
- W4285014966 crossrefType "journal-article" @default.
- W4285014966 hasAuthorship W4285014966A5010158984 @default.
- W4285014966 hasAuthorship W4285014966A5013005859 @default.
- W4285014966 hasAuthorship W4285014966A5031706329 @default.
- W4285014966 hasAuthorship W4285014966A5062205577 @default.
- W4285014966 hasAuthorship W4285014966A5087518402 @default.
- W4285014966 hasBestOaLocation W42850149661 @default.
- W4285014966 hasConcept C121608353 @default.
- W4285014966 hasConcept C126322002 @default.
- W4285014966 hasConcept C126838900 @default.
- W4285014966 hasConcept C2777428134 @default.
- W4285014966 hasConcept C2778435480 @default.
- W4285014966 hasConcept C2910480691 @default.
- W4285014966 hasConcept C2910564736 @default.
- W4285014966 hasConcept C3019719930 @default.
- W4285014966 hasConcept C40993552 @default.
- W4285014966 hasConcept C526805850 @default.
- W4285014966 hasConcept C57742111 @default.
- W4285014966 hasConcept C71924100 @default.
- W4285014966 hasConceptScore W4285014966C121608353 @default.
- W4285014966 hasConceptScore W4285014966C126322002 @default.
- W4285014966 hasConceptScore W4285014966C126838900 @default.
- W4285014966 hasConceptScore W4285014966C2777428134 @default.
- W4285014966 hasConceptScore W4285014966C2778435480 @default.
- W4285014966 hasConceptScore W4285014966C2910480691 @default.
- W4285014966 hasConceptScore W4285014966C2910564736 @default.
- W4285014966 hasConceptScore W4285014966C3019719930 @default.
- W4285014966 hasConceptScore W4285014966C40993552 @default.
- W4285014966 hasConceptScore W4285014966C526805850 @default.
- W4285014966 hasConceptScore W4285014966C57742111 @default.
- W4285014966 hasConceptScore W4285014966C71924100 @default.
- W4285014966 hasIssue "11" @default.
- W4285014966 hasLocation W42850149661 @default.
- W4285014966 hasLocation W42850149662 @default.
- W4285014966 hasOpenAccess W4285014966 @default.
- W4285014966 hasPrimaryLocation W42850149661 @default.
- W4285014966 hasRelatedWork W1965824321 @default.
- W4285014966 hasRelatedWork W2002975805 @default.
- W4285014966 hasRelatedWork W2028776028 @default.
- W4285014966 hasRelatedWork W2350825112 @default.
- W4285014966 hasRelatedWork W2382221893 @default.
- W4285014966 hasRelatedWork W2400120365 @default.
- W4285014966 hasRelatedWork W2401782325 @default.
- W4285014966 hasRelatedWork W2416043153 @default.
- W4285014966 hasRelatedWork W2742562010 @default.
- W4285014966 hasRelatedWork W4290260357 @default.
- W4285014966 hasVolume "20" @default.
- W4285014966 isParatext "false" @default.
- W4285014966 isRetracted "false" @default.