Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285024807> ?p ?o ?g. }
- W4285024807 endingPage "1694" @default.
- W4285024807 startingPage "1694" @default.
- W4285024807 abstract "Background: Colposcopy imaging is widely used to diagnose, treat and follow-up on premalignant and malignant lesions in the vulva, vagina, and cervix. Thus, deep learning algorithms are being used widely in cervical cancer diagnosis tools. In this study, we developed and preliminarily validated a model based on the Unet network plus SVM to classify cervical lesions on colposcopy images. Methodology: Two sets of images were used: the Intel & Mobile ODT Cervical Cancer Screening public dataset, and a private dataset from a public hospital in Ecuador during a routine colposcopy, after the application of acetic acid and lugol. For the latter, the corresponding clinical information was collected, specifically cytology on the PAP smear and the screening of human papillomavirus testing, prior to colposcopy. The lesions of the cervix or regions of interest were segmented and classified by the Unet and the SVM model, respectively. Results: The CAD system was evaluated for the ability to predict the risk of cervical cancer. The lesion segmentation metric results indicate a DICE of 50%, a precision of 65%, and an accuracy of 80%. The classification results’ sensitivity, specificity, and accuracy were 70%, 48.8%, and 58%, respectively. Randomly, 20 images were selected and sent to 13 expert colposcopists for a statistical comparison between visual evaluation experts and the CAD tool (p-value of 0.597). Conclusion: The CAD system needs to improve but could be acceptable in an environment where women have limited access to clinicians for the diagnosis, follow-up, and treatment of cervical cancer; better performance is possible through the exploration of other deep learning methods with larger datasets." @default.
- W4285024807 created "2022-07-12" @default.
- W4285024807 creator A5017714263 @default.
- W4285024807 creator A5027600259 @default.
- W4285024807 creator A5038396366 @default.
- W4285024807 creator A5050201327 @default.
- W4285024807 creator A5052789850 @default.
- W4285024807 creator A5061944153 @default.
- W4285024807 creator A5089555642 @default.
- W4285024807 date "2022-07-12" @default.
- W4285024807 modified "2023-09-27" @default.
- W4285024807 title "Radiomics Diagnostic Tool Based on Deep Learning for Colposcopy Image Classification" @default.
- W4285024807 cites W2007685541 @default.
- W4285024807 cites W2087347434 @default.
- W4285024807 cites W2103594507 @default.
- W4285024807 cites W2172647018 @default.
- W4285024807 cites W2193118562 @default.
- W4285024807 cites W2418532061 @default.
- W4285024807 cites W2610166850 @default.
- W4285024807 cites W2757862658 @default.
- W4285024807 cites W2782769512 @default.
- W4285024807 cites W2801910559 @default.
- W4285024807 cites W2884436604 @default.
- W4285024807 cites W2890606532 @default.
- W4285024807 cites W2901208058 @default.
- W4285024807 cites W2908052439 @default.
- W4285024807 cites W2970055610 @default.
- W4285024807 cites W2978264737 @default.
- W4285024807 cites W3006104185 @default.
- W4285024807 cites W3014269107 @default.
- W4285024807 cites W3043279728 @default.
- W4285024807 cites W3048881824 @default.
- W4285024807 cites W3110379578 @default.
- W4285024807 cites W3122118149 @default.
- W4285024807 cites W3128646645 @default.
- W4285024807 cites W3130908143 @default.
- W4285024807 cites W3157477640 @default.
- W4285024807 cites W3175837947 @default.
- W4285024807 cites W3183802074 @default.
- W4285024807 cites W3193266809 @default.
- W4285024807 cites W3215969524 @default.
- W4285024807 cites W4223626566 @default.
- W4285024807 cites W4239819457 @default.
- W4285024807 doi "https://doi.org/10.3390/diagnostics12071694" @default.
- W4285024807 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35885598" @default.
- W4285024807 hasPublicationYear "2022" @default.
- W4285024807 type Work @default.
- W4285024807 citedByCount "3" @default.
- W4285024807 countsByYear W42850248072023 @default.
- W4285024807 crossrefType "journal-article" @default.
- W4285024807 hasAuthorship W4285024807A5017714263 @default.
- W4285024807 hasAuthorship W4285024807A5027600259 @default.
- W4285024807 hasAuthorship W4285024807A5038396366 @default.
- W4285024807 hasAuthorship W4285024807A5050201327 @default.
- W4285024807 hasAuthorship W4285024807A5052789850 @default.
- W4285024807 hasAuthorship W4285024807A5061944153 @default.
- W4285024807 hasAuthorship W4285024807A5089555642 @default.
- W4285024807 hasBestOaLocation W42850248071 @default.
- W4285024807 hasConcept C121608353 @default.
- W4285024807 hasConcept C126322002 @default.
- W4285024807 hasConcept C126838900 @default.
- W4285024807 hasConcept C154945302 @default.
- W4285024807 hasConcept C168820333 @default.
- W4285024807 hasConcept C2776117191 @default.
- W4285024807 hasConcept C2777740455 @default.
- W4285024807 hasConcept C2778220009 @default.
- W4285024807 hasConcept C29456083 @default.
- W4285024807 hasConcept C41008148 @default.
- W4285024807 hasConcept C71924100 @default.
- W4285024807 hasConceptScore W4285024807C121608353 @default.
- W4285024807 hasConceptScore W4285024807C126322002 @default.
- W4285024807 hasConceptScore W4285024807C126838900 @default.
- W4285024807 hasConceptScore W4285024807C154945302 @default.
- W4285024807 hasConceptScore W4285024807C168820333 @default.
- W4285024807 hasConceptScore W4285024807C2776117191 @default.
- W4285024807 hasConceptScore W4285024807C2777740455 @default.
- W4285024807 hasConceptScore W4285024807C2778220009 @default.
- W4285024807 hasConceptScore W4285024807C29456083 @default.
- W4285024807 hasConceptScore W4285024807C41008148 @default.
- W4285024807 hasConceptScore W4285024807C71924100 @default.
- W4285024807 hasFunder F4320331563 @default.
- W4285024807 hasIssue "7" @default.
- W4285024807 hasLocation W42850248071 @default.
- W4285024807 hasLocation W42850248072 @default.
- W4285024807 hasLocation W42850248073 @default.
- W4285024807 hasLocation W42850248074 @default.
- W4285024807 hasLocation W42850248075 @default.
- W4285024807 hasOpenAccess W4285024807 @default.
- W4285024807 hasPrimaryLocation W42850248071 @default.
- W4285024807 hasRelatedWork W2025105594 @default.
- W4285024807 hasRelatedWork W2184317297 @default.
- W4285024807 hasRelatedWork W2737838839 @default.
- W4285024807 hasRelatedWork W282299192 @default.
- W4285024807 hasRelatedWork W2888045684 @default.
- W4285024807 hasRelatedWork W2973168067 @default.
- W4285024807 hasRelatedWork W3011191626 @default.
- W4285024807 hasRelatedWork W4252515899 @default.
- W4285024807 hasRelatedWork W4255116623 @default.