Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285026066> ?p ?o ?g. }
- W4285026066 endingPage "700" @default.
- W4285026066 startingPage "700" @default.
- W4285026066 abstract "To combat global warming, as an energy-saving technology, membrane separation can be applied to capture CO2 from flue gas. Metal-organic frameworks (MOFs) with characteristics like high porosity have great potential as membrane materials for gas mixture separation. In this work, through a combination of grand canonical Monte Carlo and molecular dynamics simulations, the permeability of three gases (CO2, N2, and O2) was calculated and estimated in 6013 computation-ready experimental MOF membranes (CoRE-MOFMs). Then, the relationship between structural descriptors and permeance performance, and the importance of available permeance area to permeance performance of gas molecules with smaller kinetic diameters were found by univariate analysis. Furthermore, comparing the prediction accuracy of seven classification machine learning algorithms, XGBoost was selected to analyze the order of importance of six structural descriptors to permeance performance, through which the conclusion of the univariate analysis was demonstrated one more time. Finally, seven promising CoRE-MOFMs were selected, and their structural characteristics were analyzed. This work provides explicit directions and powerful guidelines to experimenters to accelerate the research on membrane separation for the purification of flue gas." @default.
- W4285026066 created "2022-07-12" @default.
- W4285026066 creator A5014886144 @default.
- W4285026066 creator A5044568798 @default.
- W4285026066 creator A5048880211 @default.
- W4285026066 creator A5058600535 @default.
- W4285026066 creator A5059352028 @default.
- W4285026066 creator A5061711317 @default.
- W4285026066 creator A5071243504 @default.
- W4285026066 creator A5084952390 @default.
- W4285026066 date "2022-07-11" @default.
- W4285026066 modified "2023-10-12" @default.
- W4285026066 title "Large-Scale Screening and Machine Learning for Metal–Organic Framework Membranes to Capture CO2 from Flue Gas" @default.
- W4285026066 cites W1678356000 @default.
- W4285026066 cites W1852577707 @default.
- W4285026066 cites W1963883777 @default.
- W4285026066 cites W1983094327 @default.
- W4285026066 cites W2001676859 @default.
- W4285026066 cites W2016911518 @default.
- W4285026066 cites W2022353023 @default.
- W4285026066 cites W2030971064 @default.
- W4285026066 cites W2053294416 @default.
- W4285026066 cites W2055522016 @default.
- W4285026066 cites W2062904068 @default.
- W4285026066 cites W2072448107 @default.
- W4285026066 cites W2084266203 @default.
- W4285026066 cites W2102830904 @default.
- W4285026066 cites W2116867286 @default.
- W4285026066 cites W2122111042 @default.
- W4285026066 cites W2156454985 @default.
- W4285026066 cites W2163242195 @default.
- W4285026066 cites W2274103454 @default.
- W4285026066 cites W2323599744 @default.
- W4285026066 cites W2327538581 @default.
- W4285026066 cites W2334549288 @default.
- W4285026066 cites W2529065655 @default.
- W4285026066 cites W2587411779 @default.
- W4285026066 cites W2767248572 @default.
- W4285026066 cites W2810029487 @default.
- W4285026066 cites W2883510523 @default.
- W4285026066 cites W2884063146 @default.
- W4285026066 cites W2941423636 @default.
- W4285026066 cites W2949234599 @default.
- W4285026066 cites W2959890194 @default.
- W4285026066 cites W2983028326 @default.
- W4285026066 cites W2984821197 @default.
- W4285026066 cites W2992843173 @default.
- W4285026066 cites W2994911552 @default.
- W4285026066 cites W3003201860 @default.
- W4285026066 cites W3012065545 @default.
- W4285026066 cites W3013746329 @default.
- W4285026066 cites W3032226428 @default.
- W4285026066 cites W3039136197 @default.
- W4285026066 cites W3039944200 @default.
- W4285026066 cites W3047237491 @default.
- W4285026066 cites W3109744068 @default.
- W4285026066 cites W3131079059 @default.
- W4285026066 cites W3131521736 @default.
- W4285026066 cites W3138769948 @default.
- W4285026066 cites W3159498732 @default.
- W4285026066 cites W3168007315 @default.
- W4285026066 cites W3191561027 @default.
- W4285026066 cites W3210379018 @default.
- W4285026066 cites W4200074069 @default.
- W4285026066 cites W4200098694 @default.
- W4285026066 cites W4220723676 @default.
- W4285026066 cites W4220743245 @default.
- W4285026066 cites W4220998850 @default.
- W4285026066 cites W4221006273 @default.
- W4285026066 cites W4229026094 @default.
- W4285026066 doi "https://doi.org/10.3390/membranes12070700" @default.
- W4285026066 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35877903" @default.
- W4285026066 hasPublicationYear "2022" @default.
- W4285026066 type Work @default.
- W4285026066 citedByCount "4" @default.
- W4285026066 countsByYear W42850260662022 @default.
- W4285026066 countsByYear W42850260662023 @default.
- W4285026066 crossrefType "journal-article" @default.
- W4285026066 hasAuthorship W4285026066A5014886144 @default.
- W4285026066 hasAuthorship W4285026066A5044568798 @default.
- W4285026066 hasAuthorship W4285026066A5048880211 @default.
- W4285026066 hasAuthorship W4285026066A5058600535 @default.
- W4285026066 hasAuthorship W4285026066A5059352028 @default.
- W4285026066 hasAuthorship W4285026066A5061711317 @default.
- W4285026066 hasAuthorship W4285026066A5071243504 @default.
- W4285026066 hasAuthorship W4285026066A5084952390 @default.
- W4285026066 hasBestOaLocation W42850260661 @default.
- W4285026066 hasConcept C119857082 @default.
- W4285026066 hasConcept C127413603 @default.
- W4285026066 hasConcept C161584116 @default.
- W4285026066 hasConcept C167206829 @default.
- W4285026066 hasConcept C178790620 @default.
- W4285026066 hasConcept C18411161 @default.
- W4285026066 hasConcept C185592680 @default.
- W4285026066 hasConcept C18762648 @default.
- W4285026066 hasConcept C192562407 @default.
- W4285026066 hasConcept C199163554 @default.
- W4285026066 hasConcept C21535326 @default.