Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285026111> ?p ?o ?g. }
- W4285026111 abstract "Over the past few years, the processing of motor imagery (MI) electroencephalography (EEG) signals has been attracted for developing brain-computer interface (BCI) applications, since feature extraction and classification of these signals are extremely difficult due to the inherent complexity and tendency to artifact properties of them. The BCI systems can provide a direct interaction pathway/channel between the brain and a peripheral device, hence the MI EEG-based BCI systems seem crucial to control external devices for patients suffering from motor disabilities. The current study presents a semi-supervised model based on three-stage feature extraction and machine learning algorithms for MI EEG signal classification in order to improve the classification accuracy with smaller number of deep features for distinguishing right- and left-hand MI tasks. Stockwell transform is employed at the first phase of the proposed feature extraction method to generate two-dimensional time-frequency maps (TFMs) from one-dimensional EEG signals. Next, the convolutional neural network (CNN) is applied to find deep feature sets from TFMs. Then, the semi-supervised discriminant analysis (SDA) is utilized to minimize the number of descriptors. Finally, the performance of five classifiers, including support vector machine, discriminant analysis, k-nearest neighbor, decision tree, random forest, and the fusion of them are compared. The hyperparameters of SDA and mentioned classifiers are optimized by Bayesian optimization to maximize the accuracy. The presented model is validated using BCI competition II dataset III and BCI competition IV dataset 2b. The performance metrics of the proposed method indicate its efficiency for classifying MI EEG signals." @default.
- W4285026111 created "2022-07-12" @default.
- W4285026111 creator A5012666048 @default.
- W4285026111 creator A5035633482 @default.
- W4285026111 creator A5072349706 @default.
- W4285026111 creator A5079689409 @default.
- W4285026111 date "2022-07-11" @default.
- W4285026111 modified "2023-10-09" @default.
- W4285026111 title "Stockwell transform and semi-supervised feature selection from deep features for classification of BCI signals" @default.
- W4285026111 cites W140183018 @default.
- W4285026111 cites W1973481739 @default.
- W4285026111 cites W1986754283 @default.
- W4285026111 cites W2004199831 @default.
- W4285026111 cites W2025622264 @default.
- W4285026111 cites W2059915684 @default.
- W4285026111 cites W2106006415 @default.
- W4285026111 cites W2133012565 @default.
- W4285026111 cites W2135293965 @default.
- W4285026111 cites W2141885969 @default.
- W4285026111 cites W2153912116 @default.
- W4285026111 cites W2241109995 @default.
- W4285026111 cites W2293069699 @default.
- W4285026111 cites W2424594498 @default.
- W4285026111 cites W2507528282 @default.
- W4285026111 cites W2521873691 @default.
- W4285026111 cites W2556533447 @default.
- W4285026111 cites W2557301950 @default.
- W4285026111 cites W2607306668 @default.
- W4285026111 cites W2621374544 @default.
- W4285026111 cites W2736488973 @default.
- W4285026111 cites W2765815105 @default.
- W4285026111 cites W2778861494 @default.
- W4285026111 cites W2787894218 @default.
- W4285026111 cites W2789939861 @default.
- W4285026111 cites W2791912068 @default.
- W4285026111 cites W2802983707 @default.
- W4285026111 cites W2888743130 @default.
- W4285026111 cites W2901977952 @default.
- W4285026111 cites W2905915376 @default.
- W4285026111 cites W2910261017 @default.
- W4285026111 cites W2911964244 @default.
- W4285026111 cites W2913246999 @default.
- W4285026111 cites W2914567046 @default.
- W4285026111 cites W2924079966 @default.
- W4285026111 cites W2945716874 @default.
- W4285026111 cites W2951758041 @default.
- W4285026111 cites W2960585436 @default.
- W4285026111 cites W2969404905 @default.
- W4285026111 cites W2971516445 @default.
- W4285026111 cites W2972075828 @default.
- W4285026111 cites W2987390186 @default.
- W4285026111 cites W2989145158 @default.
- W4285026111 cites W2994422921 @default.
- W4285026111 cites W3009764464 @default.
- W4285026111 cites W3033186461 @default.
- W4285026111 cites W3041449169 @default.
- W4285026111 cites W3046051368 @default.
- W4285026111 cites W3055187757 @default.
- W4285026111 cites W3119765505 @default.
- W4285026111 cites W3125401969 @default.
- W4285026111 cites W3133598629 @default.
- W4285026111 cites W3135670473 @default.
- W4285026111 cites W3181284369 @default.
- W4285026111 cites W3198189580 @default.
- W4285026111 cites W3199399225 @default.
- W4285026111 cites W3203548333 @default.
- W4285026111 cites W3212851478 @default.
- W4285026111 cites W4200060514 @default.
- W4285026111 cites W4200357095 @default.
- W4285026111 cites W4221077140 @default.
- W4285026111 cites W4239510810 @default.
- W4285026111 cites W772526079 @default.
- W4285026111 doi "https://doi.org/10.1038/s41598-022-15813-3" @default.
- W4285026111 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35817814" @default.
- W4285026111 hasPublicationYear "2022" @default.
- W4285026111 type Work @default.
- W4285026111 citedByCount "5" @default.
- W4285026111 countsByYear W42850261112022 @default.
- W4285026111 countsByYear W42850261112023 @default.
- W4285026111 crossrefType "journal-article" @default.
- W4285026111 hasAuthorship W4285026111A5012666048 @default.
- W4285026111 hasAuthorship W4285026111A5035633482 @default.
- W4285026111 hasAuthorship W4285026111A5072349706 @default.
- W4285026111 hasAuthorship W4285026111A5079689409 @default.
- W4285026111 hasBestOaLocation W42850261111 @default.
- W4285026111 hasConcept C118552586 @default.
- W4285026111 hasConcept C119857082 @default.
- W4285026111 hasConcept C12267149 @default.
- W4285026111 hasConcept C138885662 @default.
- W4285026111 hasConcept C148483581 @default.
- W4285026111 hasConcept C153180895 @default.
- W4285026111 hasConcept C154945302 @default.
- W4285026111 hasConcept C15744967 @default.
- W4285026111 hasConcept C169258074 @default.
- W4285026111 hasConcept C173201364 @default.
- W4285026111 hasConcept C2776401178 @default.
- W4285026111 hasConcept C41008148 @default.
- W4285026111 hasConcept C41895202 @default.
- W4285026111 hasConcept C52001869 @default.
- W4285026111 hasConcept C522805319 @default.