Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285029420> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W4285029420 abstract "The Chernoff information between two probability measures is a statistical divergence measuring their deviation defined as their maximally skewed Bhattacharyya distance. Although the Chernoff information was originally introduced for bounding the Bayes error in statistical hypothesis testing, the divergence found many other applications due to its empirical robustness property found in applications ranging from information fusion to quantum information. From the viewpoint of information theory, the Chernoff information can also be interpreted as a minmax symmetrization of the Kullback--Leibler divergence. In this paper, we first revisit the Chernoff information between two densities of a measurable Lebesgue space by considering the exponential families induced by their geometric mixtures: The so-called likelihood ratio exponential families. Second, we show how to (i) solve exactly the Chernoff information between any two univariate Gaussian distributions or get a closed-form formula using symbolic computing, (ii) report a closed-form formula of the Chernoff information of centered Gaussians with scaled covariance matrices and (iii) use a fast numerical scheme to approximate the Chernoff information between any two multivariate Gaussian distributions." @default.
- W4285029420 created "2022-07-12" @default.
- W4285029420 creator A5061293973 @default.
- W4285029420 date "2022-07-08" @default.
- W4285029420 modified "2023-10-18" @default.
- W4285029420 title "Revisiting Chernoff Information with Likelihood Ratio Exponential Families" @default.
- W4285029420 doi "https://doi.org/10.48550/arxiv.2207.03745" @default.
- W4285029420 hasPublicationYear "2022" @default.
- W4285029420 type Work @default.
- W4285029420 citedByCount "0" @default.
- W4285029420 crossrefType "posted-content" @default.
- W4285029420 hasAuthorship W4285029420A5061293973 @default.
- W4285029420 hasBestOaLocation W42850294201 @default.
- W4285029420 hasConcept C105795698 @default.
- W4285029420 hasConcept C14539891 @default.
- W4285029420 hasConcept C149441793 @default.
- W4285029420 hasConcept C161584116 @default.
- W4285029420 hasConcept C171752962 @default.
- W4285029420 hasConcept C199163554 @default.
- W4285029420 hasConcept C28826006 @default.
- W4285029420 hasConcept C33923547 @default.
- W4285029420 hasConcept C55974624 @default.
- W4285029420 hasConcept C58948655 @default.
- W4285029420 hasConceptScore W4285029420C105795698 @default.
- W4285029420 hasConceptScore W4285029420C14539891 @default.
- W4285029420 hasConceptScore W4285029420C149441793 @default.
- W4285029420 hasConceptScore W4285029420C161584116 @default.
- W4285029420 hasConceptScore W4285029420C171752962 @default.
- W4285029420 hasConceptScore W4285029420C199163554 @default.
- W4285029420 hasConceptScore W4285029420C28826006 @default.
- W4285029420 hasConceptScore W4285029420C33923547 @default.
- W4285029420 hasConceptScore W4285029420C55974624 @default.
- W4285029420 hasConceptScore W4285029420C58948655 @default.
- W4285029420 hasLocation W42850294201 @default.
- W4285029420 hasOpenAccess W4285029420 @default.
- W4285029420 hasPrimaryLocation W42850294201 @default.
- W4285029420 hasRelatedWork W1992592519 @default.
- W4285029420 hasRelatedWork W1997449464 @default.
- W4285029420 hasRelatedWork W2000367547 @default.
- W4285029420 hasRelatedWork W2080703211 @default.
- W4285029420 hasRelatedWork W2113826745 @default.
- W4285029420 hasRelatedWork W2397266079 @default.
- W4285029420 hasRelatedWork W2962676194 @default.
- W4285029420 hasRelatedWork W3032051564 @default.
- W4285029420 hasRelatedWork W3208841639 @default.
- W4285029420 hasRelatedWork W4206960538 @default.
- W4285029420 isParatext "false" @default.
- W4285029420 isRetracted "false" @default.
- W4285029420 workType "article" @default.