Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285032630> ?p ?o ?g. }
- W4285032630 abstract "Here, we investigated the photothermal effect of gold nanorods (GNRs) on human neuroblastoma CD133+ cancer stem cells (CSCs) via autophagic cell death. GNRs were synthesized using Cetyltrimethylammonium bromide (CTAB), covered with bovine serum albumin (BSA). CD133+ CSCs were enriched from human neuroblastoma using the magnetic-activated cell sorting (MACS) technique. Cells were incubated with GNRs coated with BSA and exposed to 808-nm near-infrared laser irradiation for 8 min to yield low (43 °C), medium (46 °C), and high (49 °C) temperatures. After 24 h, the survival rate and the percent of apoptotic and necrotic CSCs were measured using MTT assay and flow cytometry. The expression of different autophagy-related genes was measured using polymerase chain reaction (PCR) array analysis. Protein levels of P62 and LC3 were detected using an enzyme-linked immunosorbent assay (ELISA). The viability of CSC was reduced in GNR-exposed cells compared to the control group (p < 0.05). At higher temperatures (49 °C), the percent of apoptotic CSCs, but not necrotic cells, increased compared to the lower temperatures. Levels of intracellular LC3 and P62 were reduced and increased respectively when the temperature increased to 49 °C (p < 0.05). These effects were non-significant at low and medium temperatures (43 and 46 °C) related to the control CSCs (p > 0.05). The clonogenic capacity of CSC was also inhibited after photothermal therapy (p < 0.05). Despite these changes, no statistically significant differences were found in terms of CSC colony number at different temperatures regardless of the presence or absence of HCQ. Based on the data, the combination of photothermal therapy with HCQ at 49 °C can significantly abort the CSC clonogenic capacity compared to the control-matched group without HCQ (p < 0.0001). PCR array showed photothermal modulation of CSCs led to alteration of autophagy-related genes and promotion of co-regulator of apoptosis and autophagy signaling pathways. Factors related to autophagic vacuole formation and intracellular transport were significantly induced at a temperature of 49 °C (p < 0.05). We also note the expression of common genes belonging to autophagy and apoptosis signaling pathways at higher temperatures. Data showed tumoricidal effects of laser-irradiated GNRs by the alteration of autophagic response and apoptosis." @default.
- W4285032630 created "2022-07-12" @default.
- W4285032630 creator A5001692156 @default.
- W4285032630 creator A5027461724 @default.
- W4285032630 creator A5038490105 @default.
- W4285032630 creator A5040915789 @default.
- W4285032630 creator A5051889975 @default.
- W4285032630 creator A5057765778 @default.
- W4285032630 creator A5064609428 @default.
- W4285032630 creator A5067806498 @default.
- W4285032630 creator A5081484085 @default.
- W4285032630 creator A5082867002 @default.
- W4285032630 date "2022-07-11" @default.
- W4285032630 modified "2023-10-18" @default.
- W4285032630 title "Photothermal effect of albumin-modified gold nanorods diminished neuroblastoma cancer stem cells dynamic growth by modulating autophagy" @default.
- W4285032630 cites W1601336165 @default.
- W4285032630 cites W1830551067 @default.
- W4285032630 cites W1915892937 @default.
- W4285032630 cites W1977791081 @default.
- W4285032630 cites W1980867849 @default.
- W4285032630 cites W1999325242 @default.
- W4285032630 cites W2003679134 @default.
- W4285032630 cites W2012182548 @default.
- W4285032630 cites W2020131167 @default.
- W4285032630 cites W2034050926 @default.
- W4285032630 cites W2048225778 @default.
- W4285032630 cites W2059036087 @default.
- W4285032630 cites W2077637800 @default.
- W4285032630 cites W2078571932 @default.
- W4285032630 cites W2113446463 @default.
- W4285032630 cites W2116504531 @default.
- W4285032630 cites W2116609560 @default.
- W4285032630 cites W2129040637 @default.
- W4285032630 cites W2227038956 @default.
- W4285032630 cites W2250346307 @default.
- W4285032630 cites W2312941501 @default.
- W4285032630 cites W2324855605 @default.
- W4285032630 cites W2330858595 @default.
- W4285032630 cites W2398987809 @default.
- W4285032630 cites W2409174119 @default.
- W4285032630 cites W2409569485 @default.
- W4285032630 cites W2465738236 @default.
- W4285032630 cites W2547776569 @default.
- W4285032630 cites W2567034040 @default.
- W4285032630 cites W2584176612 @default.
- W4285032630 cites W2586097538 @default.
- W4285032630 cites W2727662734 @default.
- W4285032630 cites W2768197901 @default.
- W4285032630 cites W2801545685 @default.
- W4285032630 cites W2806143517 @default.
- W4285032630 cites W2883191593 @default.
- W4285032630 cites W2887144539 @default.
- W4285032630 cites W2889518593 @default.
- W4285032630 cites W2890298698 @default.
- W4285032630 cites W2890644157 @default.
- W4285032630 cites W2899628870 @default.
- W4285032630 cites W2923605604 @default.
- W4285032630 cites W2940482648 @default.
- W4285032630 cites W2947255681 @default.
- W4285032630 cites W2970743598 @default.
- W4285032630 cites W2971931729 @default.
- W4285032630 cites W2972499605 @default.
- W4285032630 cites W2997535973 @default.
- W4285032630 cites W3023768187 @default.
- W4285032630 cites W3042184579 @default.
- W4285032630 cites W3049694602 @default.
- W4285032630 cites W3115240252 @default.
- W4285032630 cites W3127413307 @default.
- W4285032630 cites W3164090328 @default.
- W4285032630 cites W3209608975 @default.
- W4285032630 cites W4221107773 @default.
- W4285032630 cites W4230225850 @default.
- W4285032630 doi "https://doi.org/10.1038/s41598-022-15660-2" @default.
- W4285032630 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35821262" @default.
- W4285032630 hasPublicationYear "2022" @default.
- W4285032630 type Work @default.
- W4285032630 citedByCount "1" @default.
- W4285032630 countsByYear W42850326302023 @default.
- W4285032630 crossrefType "journal-article" @default.
- W4285032630 hasAuthorship W4285032630A5001692156 @default.
- W4285032630 hasAuthorship W4285032630A5027461724 @default.
- W4285032630 hasAuthorship W4285032630A5038490105 @default.
- W4285032630 hasAuthorship W4285032630A5040915789 @default.
- W4285032630 hasAuthorship W4285032630A5051889975 @default.
- W4285032630 hasAuthorship W4285032630A5057765778 @default.
- W4285032630 hasAuthorship W4285032630A5064609428 @default.
- W4285032630 hasAuthorship W4285032630A5067806498 @default.
- W4285032630 hasAuthorship W4285032630A5081484085 @default.
- W4285032630 hasAuthorship W4285032630A5082867002 @default.
- W4285032630 hasBestOaLocation W42850326301 @default.
- W4285032630 hasConcept C117262875 @default.
- W4285032630 hasConcept C121608353 @default.
- W4285032630 hasConcept C153911025 @default.
- W4285032630 hasConcept C171250308 @default.
- W4285032630 hasConcept C182606246 @default.
- W4285032630 hasConcept C185592680 @default.
- W4285032630 hasConcept C190283241 @default.
- W4285032630 hasConcept C192562407 @default.
- W4285032630 hasConcept C2776715637 @default.
- W4285032630 hasConcept C2780783641 @default.