Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285035984> ?p ?o ?g. }
- W4285035984 endingPage "e645" @default.
- W4285035984 startingPage "e632" @default.
- W4285035984 abstract "BackgroundCOVID-19 is a multi-system disorder with high variability in clinical outcomes among patients who are admitted to hospital. Although some cytokines such as interleukin (IL)-6 are believed to be associated with severity, there are no early biomarkers that can reliably predict patients who are more likely to have adverse outcomes. Thus, it is crucial to discover predictive markers of serious complications.MethodsIn this retrospective cohort study, we analysed samples from 455 participants with COVID-19 who had had a positive SARS-CoV-2 RT-PCR result between April 14, 2020, and Dec 1, 2020 and who had visited one of three Mayo Clinic sites in the USA (Minnesota, Arizona, or Florida) in the same period. These participants were assigned to three subgroups depending on disease severity as defined by the WHO ordinal scale of clinical improvement (outpatient, severe, or critical). Our control cohort comprised of 182 anonymised age-matched and sex-matched plasma samples that were available from the Mayo Clinic Biorepository and banked before the COVID-19 pandemic. We did a deep profiling of circulatory cytokines and other proteins, lipids, and metabolites from both cohorts. Most patient samples were collected before, or around the time of, hospital admission, representing ideal samples for predictive biomarker discovery. We used proximity extension assays to quantify cytokines and circulatory proteins and tandem mass spectrometry to measure lipids and metabolites. Biomarker discovery was done by applying an AutoGluon-tabular classifier to a multiomics dataset, producing a stacked ensemble of cutting-edge machine learning algorithms. Global proteomics and glycoproteomics on a subset of patient samples with matched pre-COVID-19 plasma samples was also done.FindingsWe quantified 1463 cytokines and circulatory proteins, along with 902 lipids and 1018 metabolites. By developing a machine-learning-based prediction model, a set of 102 biomarkers, which predicted severe and clinical COVID-19 outcomes better than the traditional set of cytokines, were discovered. These predictive biomarkers included several novel cytokines and other proteins, lipids, and metabolites. For example, altered amounts of C-type lectin domain family 6 member A (CLEC6A), ether phosphatidylethanolamine (P-18:1/18:1), and 2-hydroxydecanoate, as reported here, have not previously been associated with severity in COVID-19. Patient samples with matched pre-COVID-19 plasma samples showed similar trends in muti-omics signatures along with differences in glycoproteomics profile.InterpretationA multiomic molecular signature in the plasma of patients with COVID-19 before being admitted to hospital can be exploited to predict a more severe course of disease. Machine learning approaches can be applied to highly complex and multidimensional profiling data to reveal novel signatures of clinical use. The absence of validation in an independent cohort remains a major limitation of the study.FundingEric and Wendy Schmidt." @default.
- W4285035984 created "2022-07-12" @default.
- W4285035984 creator A5001856843 @default.
- W4285035984 creator A5002004848 @default.
- W4285035984 creator A5005832956 @default.
- W4285035984 creator A5006762470 @default.
- W4285035984 creator A5023410987 @default.
- W4285035984 creator A5025045562 @default.
- W4285035984 creator A5027375345 @default.
- W4285035984 creator A5030494799 @default.
- W4285035984 creator A5034086211 @default.
- W4285035984 creator A5034181399 @default.
- W4285035984 creator A5037647301 @default.
- W4285035984 creator A5038877903 @default.
- W4285035984 creator A5039319315 @default.
- W4285035984 creator A5041094047 @default.
- W4285035984 creator A5043586941 @default.
- W4285035984 creator A5045381773 @default.
- W4285035984 creator A5053359412 @default.
- W4285035984 creator A5060219428 @default.
- W4285035984 creator A5063258499 @default.
- W4285035984 creator A5064721834 @default.
- W4285035984 creator A5066736275 @default.
- W4285035984 creator A5069088013 @default.
- W4285035984 creator A5072463255 @default.
- W4285035984 creator A5077171169 @default.
- W4285035984 creator A5077722019 @default.
- W4285035984 creator A5078201989 @default.
- W4285035984 creator A5079468607 @default.
- W4285035984 creator A5080757818 @default.
- W4285035984 creator A5088395323 @default.
- W4285035984 date "2022-09-01" @default.
- W4285035984 modified "2023-10-17" @default.
- W4285035984 title "Development of a multiomics model for identification of predictive biomarkers for COVID-19 severity: a retrospective cohort study" @default.
- W4285035984 cites W1970911936 @default.
- W4285035984 cites W1997540628 @default.
- W4285035984 cites W2069795542 @default.
- W4285035984 cites W2113402003 @default.
- W4285035984 cites W2144110806 @default.
- W4285035984 cites W2766458490 @default.
- W4285035984 cites W2896408267 @default.
- W4285035984 cites W2989218561 @default.
- W4285035984 cites W2998908283 @default.
- W4285035984 cites W3015861468 @default.
- W4285035984 cites W3022248657 @default.
- W4285035984 cites W3023088605 @default.
- W4285035984 cites W3027918021 @default.
- W4285035984 cites W3032599521 @default.
- W4285035984 cites W3034168389 @default.
- W4285035984 cites W3035934928 @default.
- W4285035984 cites W3036255694 @default.
- W4285035984 cites W3037544553 @default.
- W4285035984 cites W3047642460 @default.
- W4285035984 cites W3048903202 @default.
- W4285035984 cites W3087399655 @default.
- W4285035984 cites W3091839106 @default.
- W4285035984 cites W3093362241 @default.
- W4285035984 cites W3095016916 @default.
- W4285035984 cites W3100375649 @default.
- W4285035984 cites W3114740593 @default.
- W4285035984 cites W3129869280 @default.
- W4285035984 cites W3132743935 @default.
- W4285035984 cites W3135043118 @default.
- W4285035984 cites W3160048797 @default.
- W4285035984 cites W3167242835 @default.
- W4285035984 cites W3194715523 @default.
- W4285035984 cites W3211829893 @default.
- W4285035984 cites W4206449744 @default.
- W4285035984 cites W4210642183 @default.
- W4285035984 doi "https://doi.org/10.1016/s2589-7500(22)00112-1" @default.
- W4285035984 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35835712" @default.
- W4285035984 hasPublicationYear "2022" @default.
- W4285035984 type Work @default.
- W4285035984 citedByCount "25" @default.
- W4285035984 countsByYear W42850359842022 @default.
- W4285035984 countsByYear W42850359842023 @default.
- W4285035984 crossrefType "journal-article" @default.
- W4285035984 hasAuthorship W4285035984A5001856843 @default.
- W4285035984 hasAuthorship W4285035984A5002004848 @default.
- W4285035984 hasAuthorship W4285035984A5005832956 @default.
- W4285035984 hasAuthorship W4285035984A5006762470 @default.
- W4285035984 hasAuthorship W4285035984A5023410987 @default.
- W4285035984 hasAuthorship W4285035984A5025045562 @default.
- W4285035984 hasAuthorship W4285035984A5027375345 @default.
- W4285035984 hasAuthorship W4285035984A5030494799 @default.
- W4285035984 hasAuthorship W4285035984A5034086211 @default.
- W4285035984 hasAuthorship W4285035984A5034181399 @default.
- W4285035984 hasAuthorship W4285035984A5037647301 @default.
- W4285035984 hasAuthorship W4285035984A5038877903 @default.
- W4285035984 hasAuthorship W4285035984A5039319315 @default.
- W4285035984 hasAuthorship W4285035984A5041094047 @default.
- W4285035984 hasAuthorship W4285035984A5043586941 @default.
- W4285035984 hasAuthorship W4285035984A5045381773 @default.
- W4285035984 hasAuthorship W4285035984A5053359412 @default.
- W4285035984 hasAuthorship W4285035984A5060219428 @default.
- W4285035984 hasAuthorship W4285035984A5063258499 @default.
- W4285035984 hasAuthorship W4285035984A5064721834 @default.
- W4285035984 hasAuthorship W4285035984A5066736275 @default.