Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285041877> ?p ?o ?g. }
- W4285041877 endingPage "13" @default.
- W4285041877 startingPage "1" @default.
- W4285041877 abstract "The purpose of this paper is to present how data mining (DM) and machine learning (ML) contribute to the product development process (PDP). The Methodi Ordinatio methodology was used to identify important articles for this study, and VOSviewer software was applied to generate visual maps. A systematic review was conducted on the Web of Science, Scopus and Science Direct databases. Forty-six articles were designated for analysis in order to evaluate the most commonly used DM and ML techniques to support the PDP, as well as to demonstrate which specific phases are most often applied. In addition, the main limitations of the analyzed techniques were identified. The results show that the association rule technique was the most commonly used, followed by text mining, and the most used phases were planning and design. In this context, this study intends to stimulate companies to use computational techniques, more precisely DM and ML, to assist in the generation of knowledge and become a strategic factor in the PDP." @default.
- W4285041877 created "2022-07-13" @default.
- W4285041877 creator A5003230358 @default.
- W4285041877 creator A5005206699 @default.
- W4285041877 creator A5047456170 @default.
- W4285041877 creator A5067972218 @default.
- W4285041877 creator A5069546762 @default.
- W4285041877 creator A5090550667 @default.
- W4285041877 date "2022-07-12" @default.
- W4285041877 modified "2023-09-23" @default.
- W4285041877 title "How is the product development process supported by data mining and machine learning techniques?" @default.
- W4285041877 cites W1966528646 @default.
- W4285041877 cites W1978480312 @default.
- W4285041877 cites W1985960350 @default.
- W4285041877 cites W1988166728 @default.
- W4285041877 cites W1990559396 @default.
- W4285041877 cites W1996854123 @default.
- W4285041877 cites W1997056820 @default.
- W4285041877 cites W2003839768 @default.
- W4285041877 cites W2006179857 @default.
- W4285041877 cites W2007117621 @default.
- W4285041877 cites W2007400602 @default.
- W4285041877 cites W2007472459 @default.
- W4285041877 cites W2011741724 @default.
- W4285041877 cites W2012924468 @default.
- W4285041877 cites W2014325341 @default.
- W4285041877 cites W2015109938 @default.
- W4285041877 cites W2015135440 @default.
- W4285041877 cites W2017454300 @default.
- W4285041877 cites W2027817068 @default.
- W4285041877 cites W2030464438 @default.
- W4285041877 cites W2035438234 @default.
- W4285041877 cites W2035875656 @default.
- W4285041877 cites W2048278428 @default.
- W4285041877 cites W2048398698 @default.
- W4285041877 cites W2055493193 @default.
- W4285041877 cites W2061815108 @default.
- W4285041877 cites W2069414289 @default.
- W4285041877 cites W2083686454 @default.
- W4285041877 cites W2088944700 @default.
- W4285041877 cites W2129260805 @default.
- W4285041877 cites W2133973797 @default.
- W4285041877 cites W2150220236 @default.
- W4285041877 cites W2161708113 @default.
- W4285041877 cites W2170427370 @default.
- W4285041877 cites W2195308880 @default.
- W4285041877 cites W2213384274 @default.
- W4285041877 cites W2278180027 @default.
- W4285041877 cites W2341522766 @default.
- W4285041877 cites W2469759218 @default.
- W4285041877 cites W2613359266 @default.
- W4285041877 cites W2783614162 @default.
- W4285041877 cites W2803072311 @default.
- W4285041877 cites W2803875933 @default.
- W4285041877 cites W2804732499 @default.
- W4285041877 cites W2890774324 @default.
- W4285041877 cites W2899489570 @default.
- W4285041877 cites W2900047055 @default.
- W4285041877 cites W2911036826 @default.
- W4285041877 cites W2944053194 @default.
- W4285041877 cites W2978095614 @default.
- W4285041877 cites W3081670594 @default.
- W4285041877 cites W3090241690 @default.
- W4285041877 cites W426244849 @default.
- W4285041877 doi "https://doi.org/10.1080/09537325.2022.2099262" @default.
- W4285041877 hasPublicationYear "2022" @default.
- W4285041877 type Work @default.
- W4285041877 citedByCount "0" @default.
- W4285041877 crossrefType "journal-article" @default.
- W4285041877 hasAuthorship W4285041877A5003230358 @default.
- W4285041877 hasAuthorship W4285041877A5005206699 @default.
- W4285041877 hasAuthorship W4285041877A5047456170 @default.
- W4285041877 hasAuthorship W4285041877A5067972218 @default.
- W4285041877 hasAuthorship W4285041877A5069546762 @default.
- W4285041877 hasAuthorship W4285041877A5090550667 @default.
- W4285041877 hasConcept C111919701 @default.
- W4285041877 hasConcept C119857082 @default.
- W4285041877 hasConcept C124101348 @default.
- W4285041877 hasConcept C144133560 @default.
- W4285041877 hasConcept C154945302 @default.
- W4285041877 hasConcept C162853370 @default.
- W4285041877 hasConcept C19351080 @default.
- W4285041877 hasConcept C195094911 @default.
- W4285041877 hasConcept C2522767166 @default.
- W4285041877 hasConcept C2524010 @default.
- W4285041877 hasConcept C33923547 @default.
- W4285041877 hasConcept C41008148 @default.
- W4285041877 hasConcept C56739046 @default.
- W4285041877 hasConcept C90673727 @default.
- W4285041877 hasConcept C98045186 @default.
- W4285041877 hasConceptScore W4285041877C111919701 @default.
- W4285041877 hasConceptScore W4285041877C119857082 @default.
- W4285041877 hasConceptScore W4285041877C124101348 @default.
- W4285041877 hasConceptScore W4285041877C144133560 @default.
- W4285041877 hasConceptScore W4285041877C154945302 @default.
- W4285041877 hasConceptScore W4285041877C162853370 @default.
- W4285041877 hasConceptScore W4285041877C19351080 @default.
- W4285041877 hasConceptScore W4285041877C195094911 @default.