Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285042010> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4285042010 abstract "Abstract. The amount of wind farms and wind power production in Europe, both on- and off-shore, has increased rapidly in the past years. To ensure grid stability, on-time (re)scheduling of maintenance tasks and mitigate fees in energy trading, accurate predictions of wind speed and wind power are needed. It has become particularly important to improve wind speed predictions in the short range of one to six hours as wind speed variability in this range has been found to pose the largest operational challenges. Furthermore, accurate predictions of extreme wind events are of high importance to wind farm operators as timely knowledge of these can both prevent damages and offer economic preparedness. In this work we propose a deep convolutional recurrent neural network (RNN) based regression model, for the spatio-temporal prediction of extreme wind speed events over Europe in the short-to-medium range (12 hour lead-time in one hour intervals). This is achieved by training a multi-layered convolutional long short-term memory (ConvLSTM) network with so-called imbalanced regression loss. To this end we investigate three different loss functions: the inversely weighted mean absolute error (W-MAE) loss, the inversely weighted mean squared error (W-MSE) loss and the squared error-relevance area (SERA) loss. We investigate forecast performance for various high-threshold extreme events and for various numbers of network layers, and compare the imbalanced regression loss functions to the commonly used mean squared error (MSE) and mean absolute error (MAE) loss. The results indicate superior performance of an ensemble of networks trained with either W-MAE, W-MSE or SERA loss, showing substantial improvements on high intensity extreme events. We conclude that the ConvLSTM trained with imbalanced regression loss provides an effective way to adapt deep learning to the task of imbalanced spatio-temporal regression and its application to the forecasting of extreme wind events in the short-to-medium range, and may be best utilised as an ensemble. This work was performed as a part of the MEDEA project, which is funded by the Austrian Climate Research Program to further research on renewable energy and meteorologically induced extreme events." @default.
- W4285042010 created "2022-07-13" @default.
- W4285042010 creator A5009516958 @default.
- W4285042010 creator A5034652116 @default.
- W4285042010 creator A5071635663 @default.
- W4285042010 creator A5073539672 @default.
- W4285042010 date "2022-07-12" @default.
- W4285042010 modified "2023-09-26" @default.
- W4285042010 title "An adapted deep convolutional RNN model for spatio-temporal prediction of wind speed extremes in the short-to-medium range for wind energy applications" @default.
- W4285042010 doi "https://doi.org/10.5194/egusphere-2022-599" @default.
- W4285042010 hasPublicationYear "2022" @default.
- W4285042010 type Work @default.
- W4285042010 citedByCount "0" @default.
- W4285042010 crossrefType "posted-content" @default.
- W4285042010 hasAuthorship W4285042010A5009516958 @default.
- W4285042010 hasAuthorship W4285042010A5034652116 @default.
- W4285042010 hasAuthorship W4285042010A5071635663 @default.
- W4285042010 hasAuthorship W4285042010A5073539672 @default.
- W4285042010 hasBestOaLocation W42850420101 @default.
- W4285042010 hasConcept C105795698 @default.
- W4285042010 hasConcept C108583219 @default.
- W4285042010 hasConcept C119599485 @default.
- W4285042010 hasConcept C127413603 @default.
- W4285042010 hasConcept C139945424 @default.
- W4285042010 hasConcept C146978453 @default.
- W4285042010 hasConcept C147168706 @default.
- W4285042010 hasConcept C150217764 @default.
- W4285042010 hasConcept C153294291 @default.
- W4285042010 hasConcept C154945302 @default.
- W4285042010 hasConcept C161067210 @default.
- W4285042010 hasConcept C204323151 @default.
- W4285042010 hasConcept C205649164 @default.
- W4285042010 hasConcept C33923547 @default.
- W4285042010 hasConcept C39432304 @default.
- W4285042010 hasConcept C41008148 @default.
- W4285042010 hasConcept C50644808 @default.
- W4285042010 hasConcept C78600449 @default.
- W4285042010 hasConcept C81363708 @default.
- W4285042010 hasConceptScore W4285042010C105795698 @default.
- W4285042010 hasConceptScore W4285042010C108583219 @default.
- W4285042010 hasConceptScore W4285042010C119599485 @default.
- W4285042010 hasConceptScore W4285042010C127413603 @default.
- W4285042010 hasConceptScore W4285042010C139945424 @default.
- W4285042010 hasConceptScore W4285042010C146978453 @default.
- W4285042010 hasConceptScore W4285042010C147168706 @default.
- W4285042010 hasConceptScore W4285042010C150217764 @default.
- W4285042010 hasConceptScore W4285042010C153294291 @default.
- W4285042010 hasConceptScore W4285042010C154945302 @default.
- W4285042010 hasConceptScore W4285042010C161067210 @default.
- W4285042010 hasConceptScore W4285042010C204323151 @default.
- W4285042010 hasConceptScore W4285042010C205649164 @default.
- W4285042010 hasConceptScore W4285042010C33923547 @default.
- W4285042010 hasConceptScore W4285042010C39432304 @default.
- W4285042010 hasConceptScore W4285042010C41008148 @default.
- W4285042010 hasConceptScore W4285042010C50644808 @default.
- W4285042010 hasConceptScore W4285042010C78600449 @default.
- W4285042010 hasConceptScore W4285042010C81363708 @default.
- W4285042010 hasFunder F4320310617 @default.
- W4285042010 hasLocation W42850420101 @default.
- W4285042010 hasLocation W42850420102 @default.
- W4285042010 hasOpenAccess W4285042010 @default.
- W4285042010 hasPrimaryLocation W42850420101 @default.
- W4285042010 hasRelatedWork W3011539721 @default.
- W4285042010 hasRelatedWork W3097228830 @default.
- W4285042010 hasRelatedWork W3136101012 @default.
- W4285042010 hasRelatedWork W3159081993 @default.
- W4285042010 hasRelatedWork W3194968643 @default.
- W4285042010 hasRelatedWork W4200080782 @default.
- W4285042010 hasRelatedWork W4285042010 @default.
- W4285042010 hasRelatedWork W4285335815 @default.
- W4285042010 hasRelatedWork W4285802051 @default.
- W4285042010 hasRelatedWork W4362603174 @default.
- W4285042010 isParatext "false" @default.
- W4285042010 isRetracted "false" @default.
- W4285042010 workType "article" @default.