Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285058963> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4285058963 endingPage "6068" @default.
- W4285058963 startingPage "6056" @default.
- W4285058963 abstract "Nonlinear and multimode characteristics commonly appear in modern industrial process data with increasing complexity and dynamics, which have brought challenges to soft sensor modeling. To solve these issues, in this article, a dynamic mixture variational autoencoder regression model is first proposed to handle the multimode industrial process modeling with dynamic features. Furthermore, to deal with the partially labeled process data with rare quality values and large-scale unlabeled samples, a semi-supervised mixture variational autoencoder regression model is proposed, where a corresponding semi-supervised data sequence division scheme is introduced to make full use of the information in both labeled and unlabeled data. Finally, to verify the feasibility and effectiveness of the proposed methods, the models are applied to a numerical case and a methanation furnace case. The results show that the proposed methods have superior soft sensing performance, compared with the state-of-the-art methods." @default.
- W4285058963 created "2022-07-13" @default.
- W4285058963 creator A5020586879 @default.
- W4285058963 creator A5035755593 @default.
- W4285058963 creator A5050292986 @default.
- W4285058963 creator A5067726465 @default.
- W4285058963 creator A5090827939 @default.
- W4285058963 date "2023-04-01" @default.
- W4285058963 modified "2023-10-14" @default.
- W4285058963 title "Semi-Supervised Deep Dynamic Probabilistic Latent Variable Model for Multimode Process Soft Sensor Application" @default.
- W4285058963 cites W1969833588 @default.
- W4285058963 cites W2036887017 @default.
- W4285058963 cites W2342028629 @default.
- W4285058963 cites W2539756354 @default.
- W4285058963 cites W2540224322 @default.
- W4285058963 cites W2626923521 @default.
- W4285058963 cites W2741800562 @default.
- W4285058963 cites W2777815485 @default.
- W4285058963 cites W2786583476 @default.
- W4285058963 cites W2792972374 @default.
- W4285058963 cites W2902182735 @default.
- W4285058963 cites W2913132632 @default.
- W4285058963 cites W2916182456 @default.
- W4285058963 cites W2919235887 @default.
- W4285058963 cites W2948978827 @default.
- W4285058963 cites W2950977133 @default.
- W4285058963 cites W2978430608 @default.
- W4285058963 cites W2982252423 @default.
- W4285058963 cites W3010196813 @default.
- W4285058963 cites W3012326076 @default.
- W4285058963 cites W3036721652 @default.
- W4285058963 cites W3082184637 @default.
- W4285058963 cites W3082433520 @default.
- W4285058963 cites W3089040363 @default.
- W4285058963 cites W3091264179 @default.
- W4285058963 cites W3123899295 @default.
- W4285058963 cites W3138399413 @default.
- W4285058963 cites W3215430566 @default.
- W4285058963 doi "https://doi.org/10.1109/tii.2022.3183211" @default.
- W4285058963 hasPublicationYear "2023" @default.
- W4285058963 type Work @default.
- W4285058963 citedByCount "3" @default.
- W4285058963 countsByYear W42850589632022 @default.
- W4285058963 countsByYear W42850589632023 @default.
- W4285058963 crossrefType "journal-article" @default.
- W4285058963 hasAuthorship W4285058963A5020586879 @default.
- W4285058963 hasAuthorship W4285058963A5035755593 @default.
- W4285058963 hasAuthorship W4285058963A5050292986 @default.
- W4285058963 hasAuthorship W4285058963A5067726465 @default.
- W4285058963 hasAuthorship W4285058963A5090827939 @default.
- W4285058963 hasConcept C101738243 @default.
- W4285058963 hasConcept C111919701 @default.
- W4285058963 hasConcept C115575686 @default.
- W4285058963 hasConcept C119857082 @default.
- W4285058963 hasConcept C124101348 @default.
- W4285058963 hasConcept C153180895 @default.
- W4285058963 hasConcept C154945302 @default.
- W4285058963 hasConcept C41008148 @default.
- W4285058963 hasConcept C49937458 @default.
- W4285058963 hasConcept C50644808 @default.
- W4285058963 hasConcept C51167844 @default.
- W4285058963 hasConcept C67186912 @default.
- W4285058963 hasConcept C77088390 @default.
- W4285058963 hasConcept C98045186 @default.
- W4285058963 hasConceptScore W4285058963C101738243 @default.
- W4285058963 hasConceptScore W4285058963C111919701 @default.
- W4285058963 hasConceptScore W4285058963C115575686 @default.
- W4285058963 hasConceptScore W4285058963C119857082 @default.
- W4285058963 hasConceptScore W4285058963C124101348 @default.
- W4285058963 hasConceptScore W4285058963C153180895 @default.
- W4285058963 hasConceptScore W4285058963C154945302 @default.
- W4285058963 hasConceptScore W4285058963C41008148 @default.
- W4285058963 hasConceptScore W4285058963C49937458 @default.
- W4285058963 hasConceptScore W4285058963C50644808 @default.
- W4285058963 hasConceptScore W4285058963C51167844 @default.
- W4285058963 hasConceptScore W4285058963C67186912 @default.
- W4285058963 hasConceptScore W4285058963C77088390 @default.
- W4285058963 hasConceptScore W4285058963C98045186 @default.
- W4285058963 hasFunder F4320321001 @default.
- W4285058963 hasIssue "4" @default.
- W4285058963 hasLocation W42850589631 @default.
- W4285058963 hasOpenAccess W4285058963 @default.
- W4285058963 hasPrimaryLocation W42850589631 @default.
- W4285058963 hasRelatedWork W2292254049 @default.
- W4285058963 hasRelatedWork W2592385986 @default.
- W4285058963 hasRelatedWork W2610906757 @default.
- W4285058963 hasRelatedWork W2772780115 @default.
- W4285058963 hasRelatedWork W2897995864 @default.
- W4285058963 hasRelatedWork W2998168123 @default.
- W4285058963 hasRelatedWork W3099179464 @default.
- W4285058963 hasRelatedWork W4281924768 @default.
- W4285058963 hasRelatedWork W4287995534 @default.
- W4285058963 hasRelatedWork W4309838615 @default.
- W4285058963 hasVolume "19" @default.
- W4285058963 isParatext "false" @default.
- W4285058963 isRetracted "false" @default.
- W4285058963 workType "article" @default.